Air Force Institute of Technology

AFIT Scholar

Theses and Dissertations Student Graduate Works

3-26-2015

Correlation of Solar X-ray Flux and SID Modified
VLEF Signal Strength

Shannon N. Kranich

Follow this and additional works at: https://scholar.afit.edu/etd

Recommended Citation

Kranich, Shannon N., "Correlation of Solar X-ray Flux and SID Modified VLF Signal Strength" (2015). Theses and Dissertations. 84.
https://scholar.afit.edu/etd/84

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been accepted for inclusion in Theses and

Dissertations by an authorized administrator of AFIT Scholar. For more information, please contact richard.mansfield @afit.edu.

www.manharaa.com



https://scholar.afit.edu?utm_source=scholar.afit.edu%2Fetd%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/graduate_works?utm_source=scholar.afit.edu%2Fetd%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/84?utm_source=scholar.afit.edu%2Fetd%2F84&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

CORRELATION OF SOLAR X-RAY FLUX AND SID MODIFIED VLF SIGNAL
STRENGTH

THESIS

Shannon N. Kranich, Captain, USAF
AFIT-ENP-MS-15-M-077

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A.
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.



The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is not
subject to copyright protection in the United States.

www.manharaa.com




AFIT-ENP-MS-15-M-077

CORRELATION OF SOLAR X-RAY FLUX AND SID MODIFIED VLF SIGNAL

STRENGTH

THESIS

Presented to the Faculty
Department of Engineering Physics
Graduate School of Engineering and Management
Air Force Institute of Technology
Air University
Air Education and Training Command
In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Applied Physics

Shannon N. Kranich, BS

Captain, USAF

March 2015

DISTRIBUTION STATEMENT A.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.

www.manharaa.com



AFIT-ENP-MS-15-M-077

CORRELATION OF SOLAR X-RAY FLUX AND SID MODIFIED VLF SIGNAL

STRENGTH

Shannon N. Kranich, BS

Captain, USAF

Committee Membership:

Dr. William F. Bailey
Chair

Dr. Robert D. Loper
Member

Lt Col Robert S. Wacker, PhD
Member

Dr. Karatholuvu S. Balasubramaniam
Member

www.manharaa.com



AFIT-ENP-MS-15-M-077

Abstract

This paper presents a quantitative comparison of the X-ray flux during solar
flares, as measured by the GOES-15 satellite, and the associated effects on the ionization
levels in the lower ionosphere as measured by Sudden lonospheric Disturbance (SID)
monitors around the globe. These monitors detect signals from a variety of different
transmitting stations, each sending a unique Very Low Frequency (VLF) or Low
Frequency (LF) radio wave signal ranging from 16.4 to 77.5 kHz. Global signal
propagation distances are achieved via the Earth-ionosphere waveguide propagation
mode. During a solar flare, the increased X-ray flux enhances the ionization response in
the sunlit ionosphere. The resulting SID in the lower ionosphere alters LF and VLF signal
propagation. The monitored signal strength increases as a result of increased conductivity
of the layer and a decrease in height of the ionosphere boundary. X-ray flux and SID
modified signal strength were analyzed from March 2010 to June 2014. lonospheric
incubation times, and duration and strength of signal enhancement are related to flare

strength via the X-ray flux enhancement.
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CORRELATION OF SOLAR X-RAY FLUX AND SID MODIFIED VLF SIGNAL

STRENGTH

I. Introduction

1.1 Motivation

The ionosphere greatly influences long wave radio transmissions and
communications. During solar flares, there is a several order of magnitude increase in X-
ray flux which rapidly increases photoionization in the lower ionosphere. This sudden
change in ion density is known as a Sudden lonospheric Disturbance (SID). Low
Frequency (LF) and Very Low Frequency (VLF) radio waves, broadcast from point
source transmitters around the world, are altered by the change in electron content of the
low ionosphere. The increased conductivity and the lowering of the ionospheric boundary
cause the radio wave amplitude to increase as seen when intercepted by a radio receiver.
The study of signal enhancement was first conducted by the Cambridge Group in the late
1940’s [Bracewell and Straker, 1949]. Study of SIDs have continued through the
decades, but little work has been done to compare the signal responses to the changes in
X-ray flux. When this project was proposed by the Air Force Research Laboratory
(AFRL), Dr. Balasubramaniam stated that “this cross-disciplinary work is precisely what
is missing and what is needed for the Air Force” [Balasubramaniam, 2014].
1.2 Background

This study consists of a quantitative comparison of X-ray flux during solar flares
as measured by the GOES-15 satellite and the associated effects on the ionization levels

of the lower ionosphere as measured by SID monitors around the globe. GOES-15, in
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operation since March 2010, is part of the Geostationary Operational Environmental
Satellite (GOES) system operated by the National Oceanic and Atmospheric Association
(NOAA). In the time since its launch, GOES-15 has recorded over 500 solar flares of M-
class or greater by continuously measuring the changes in X-ray radiation flux incident
upon the Earth’s upper atmosphere. Before the dawn of the GOES satellites, flares were
classified by measuring size and relative brightness on photographs taken using a Ha
filter. Solar flares are now classified by the peak X-ray flux measured by the GOES
satellite system, with M-class measuring between 10® and 10 watts per meter squared
and X-class flares measuring greater than 10 watts per meter squared.

In 2007, the Solar Center at Stanford University introduced a design for an
inexpensive, yet effective, device that could be used to monitor SIDs. In conjunction with
the United Nations Heliophysical Year, the monitors were designated for distribution to
all 193 countries around the world. In addition, the American Association of Variable
Star Observers (AAVSO) works with professionals across the world to maintain a SID
monitoring network with privately built and maintained SID monitors. These monitors
measure a variety of different transmitting stations from across the globe, each sending a
unique Low Frequency (LF) or Very Low Frequency (VLF) radio signal ranging from
16.4 to 77.5 kHz. These radio waves are able to propagate long distances by reflecting
off free electrons in the ionosphere which constitute the upper boundary of the Earth-
lonosphere Waveguide. During a solar flare, the X-ray radiation hitting the Earth’s
atmosphere increases by as much as four orders of magnitude in a matter of minutes. The
Total Electron Content (TEC) increases as the high frequency radiation ionizes the

molecules of the ionosphere. The increased electron content, in turn, results in an
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increased signal strength of the transmissions as the altitude and location of the signal
reflection lowers with electron concentrations penetrating deeper into the normally
neutral atmosphere.
1.3 Research Objectives

Using the data gathered by GOES-15 and SID Monitors across the globe, this
thesis examines LF and VLF signal response during SIDs as a result of increased X-ray
flux from M-class and X-class solar flares, beginning in March 2010 and ending June
2014 (see Figure 1-1 below). During this project, a usable SID monitor database will be
compiled for this and future research. This research will examine the magnitude of the
change in radio signal strength recorded with respect to the change in the magnitude of
X-ray flux as well as the seasonal variation of the ionosphere. Incubation times for the
ionosphere to fully respond to increased X-ray flux, as well comparison of the rise time,
duration, and decay time of the SID to the corresponding solar flare will be analyzed, as

well as transmitter frequency dependence on SID signature.
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I1. Background

This chapter discusses the background information necessary to understanding the
major concepts addressed and the equipment used in the course of this research. The first
part of this chapter begins with a discussion of the sun and an introduction of solar flares,
then it progresses to Earth’s upper atmosphere to discuss the basics of the ionosphere and
sudden ionospheric disturbances (SIDs), and lastly it discusses propagation of
electromagnetic waves through the neutral atmosphere and how the ionosphere affects
that motion. The second part of this chapter addresses the equipment used to collect the
data including the GOES15 satellite and the SID monitors.

2.1 Natural Phenomena

2.1.1 Solar Flares

Solar flares are the most explosive events in the solar system, ejecting
electromagnetic radiation, energetic particles, and stellar material into space. Solar flares
occur when the magnetohydrodynamic equilibrium of the sun’s magnetic field is
disturbed, causing a rapid and violent release of energy stored in the magnetic field lines
[Foukal 2013]. Solar flares are capable of releasing up to 10% Joules of energy and 10
kilograms of mass over time spans of seconds to just a few minutes [Acebal 2013]. The
radiation and plasma emitted into the interplanetary medium during these events play a
major role in space weather.

Space weather encompasses all interactions between the Earth’s magnetic field,
its atmosphere, and interplanetary space. Electromagnetic radiation constantly irradiates
Earth at an average rate of 1360 watts per square meter, which is known as the solar

constant. Forty-one percent of this radiation lies within the visible spectrum detectable by
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the human eye, with another seven percent lying in the near ultraviolet spectrum, and
fifty-two percent in the infrared. [Acebal 2013]. Radio waves, extreme ultraviolet, and
X-rays usually provide negligible contributions to the sun’s total energy output. During a
solar flare, however, these emissions can increase by as much as four orders of magnitude
(see Figure 2-1 below). The impacts of this massive increase in high energy radiation can

be seen throughout the solar system.

7\ N Impact of solar activity N
/ CrS are R
‘ / N\, Numbers are
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= ) \\\ total solar output .
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[ 4 — =
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Figure 2-1. Impact of solar activity on solar electromagnetic emissions [Acebal 2013]

The first Earth-based observation of a solar flare occurred on 1 September 1859
by R. C. Carrington and R. Hodgson [Carrington 1859]. This flare was unique in that it
was powerful enough to create a noticeable increase in the visible spectrum allowing the
two astronomers to detect the event. Impacts from this event extended as far south as
Honolulu, Hawaii, and auroral currents in the United States were strong enough to carry
telegraph signals unaided by transmission lines [Knipp 2011]. An event like this today
would cause radio blackouts, global positioning failure, irreparable satellite damage, and

wide spread power grid failure. A 2013 study by Lloyd’s of London and Atmospheric



and Environmental Research Inc. found that if similar event were to happen today, the
economic costs to the United States alone would be between 0.6-2.6 trillion USD due to
loss of transformers and electrical circuits, causing widespread power outages lasting
weeks to years [Lloyd’s 2013]. Nationwide loss of transformers due to power surges
would take years to fully recover. A study published in early 2014 concluded that the
probability of a similar event occurring in the next ten years to be 12 percent [Riley
2012].

The first major advancement in solar flare observation didn’t come for over 80
years, until World War 11, when British radar operators observed radiation of an unknown
origin. When the reports were released in 1945, a new field of study emerged known as
radio astronomy, which focused on categorizing solar radio signals [Foukal 2013]. With
Earth’s atmosphere blocking the majority of extreme ultraviolet (EUV) and X-ray
radiation, it was not until the space age that the true complexity of solar flares began to
reveal itself. The first observations of EUV and X-ray emissions were completed by the
Naval Research Laboratory in the late 1940s using rockets developed during World War
I1. Since that time, satellites and space stations have made tremendous advances in solar
observations. Studies of the electromagnetic radiation released by solar flares have
provided knowledge of flare phases and flare types leading to the development of two
systems for classifying solar flares. Additionally, understanding of flare structure and
development has led to knowledge of how and where in the solar atmosphere specific
wavelengths of radiation originate.

Observing the electromagnetic emissions from the sun has allowed astronomers to

identify three main phases of a solar flare; the pre-flare, the impulse or flash, and the
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decay (see Figure 2-2 below). Solar flares occur in regions of high magnetic activity
above the surface of the sun. These active regions are most notably marked in the visible
spectrum by sunspots on the sun’s surface and can be seen in the X-ray and EUV portions
of the electromagnetic spectrum as bright patches relative to the quiet background of the
solar disk. During the pre-flare phase, there is a noticeable brightening of the active
region in the X-ray and EUV portions of the spectrum as the magnetic field lines become
unstable. This phase usually lasts only a few minutes, but can last for several hours in
some cases [Foukal 2013]. The most energetic part of the flare occurs during the flash, or
impulsive phase, and produces the greatest increase in radiation output. The flash phase
lasts seconds to minutes with individual impulses lasting seconds or less. In these
moments, emissions in the X-ray, EUV, microwave, and Hydrogen-alpha (Ho, 6562.8A)
portions of the electromagnetic spectrum reach their maximum and are used by
astronomers to mark the precise timing of the flare event. Following the flash phase the
decay phase begins, marking the gradual decrease of flare radiation to levels before the
pre-flare stage, or to levels comparable to the background emissions from the rest of the
solar disk. During the decay phase, strong magnetic regions may continue to release
multiple flares, compounding the total emissions and increasing the length of the decay

phase to as long as several days.
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Figure 2-2. Consecutive Ho images of a two ribbon flare, noted by the two bright lines on
either side of the darker central neutral zone, in pre-flare (frames 1-3), impulse (frame 4),
and decay (frame 5-6) stages taken by Big Bear Solar Observatory, 29 April 1998.

The pattern in which radiation emerges can also tell astronomers about the type of
solar flare. Solar flares are generally categorized as compact flares or two-ribbon flares
[Foukal 2013]. Compact flares are marked by a brightening within a magnetic loop above
the sun’s surface. These flares are small, lack the energy to accelerate solar material to
escape velocities, and cause little to no structural change in the magnetic field lines.
Without the energy needed to project plasma into space, these flares have little to no
impact on space weather or Earth’s environment. Two-ribbon flares however, are the
spectacular, explosive, events most commonly thought of in association with solar

eruptions. These events are marked by a brightening of two narrow strips along
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oppositely-polarized magnetic field lines on either side of a magnetic neutral zone (see
Figure 2-2 above). These events occur in the breaking and recombining of magnetic field
lines and cause large scale changes in the magnetic field surrounding solar active regions.
The strongest of these events can accelerate solar material at near relativistic speeds
creating shockwaves both in the stellar atmosphere and through interplanetary space. The
radiation and material released from two-ribbon flares create far-reaching impacts and
can have devastating impacts on Earth’s environment and technology.

Astronomers further classify flares using radiation emissions in the visible or the
X-ray portions of the electromagnetic spectrum. The first classification system,
developed in the 1930’s, was the Ha Classification. Ho classification uses a series of
images taken by cameras filtered to the Ha emission line at 6562.8 A. The Hao line lies in
the visual portion of the electromagnetic spectrum, and is part of the Balmer series. The
light seen at this wavelength is the emission seen when a photon is created in the decay of
Hydrogen atoms from the third excited state to the second. Using images of the sun, the
system uses two criteria to classify a flare: total size and relative brightness. If a
chromospheric brightening exceeds 300 million square kilometers it is assigned a value
from 0 to 4 and is measured in square meters, or in millionths of the solar disk at the time
of maximum brightness (see Table 2-1 below) [Foukal 2013]. The brightness is then
categorized as F, N or B, representing faint, normal and brilliant, to describe the intensity
of the flare relative to the rest of the solar disk (see Table 2-2 below). Due to differences
in human perception and the subjective nature of the criteria, this system is not as reliable

or consistent as the newer system of classification.

2-6

www.manaraa.com



Table 2-1. Hydrogen Alpha Size Classification

Flare Importance Flf_alr_e Area _ Flare Area
Millionths of the Solar Hemisphere | Square meters

0 <100 <2.48x10’

1 100-250 2.48x10"-6.32x10’

2 250-600 6.32x10"-1.54x10°

3 600-1200 1.54x10°-3.06x10°

4 >1200 >3.06x10°

Table 2-2. Hydrogen Alpha Intensity Classification

Brightness Percent of Background
Faint 160% - 270%

Normal 270% - 360%

Brilliant >360%

The X-ray classification system that replaced the Ha system is based on the
maximum soft X-ray, or 1 to 8 A wavelength, flux as measured in watts per square meter
by the GOES satellite systems. This system has been in place since 1974 with the launch
of the first geostationary meteorological satellites. The system classifies solar flares with
a letter designator of A, B, C, M, or X, with A being the weakest flares and X the
strongest (see Table 2-3 below). A and B class flares are not strong enough to impact
Earth’s environment or satellites and are often too weak to even be detectable at Earth
orbit. C class flares are the most common type of flares observed from Earth orbit and by
ground-based instruments. However, these flares are still too weak to have any major
impact on Earth environment or operations. M stands for medium or moderate intensity
and can have noticeable impacts on global positioning, satellite communications, and
radio signals. The largest flares fall under the X classification for their extreme nature

and potential impacts on Earth.
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Table 2-3. X-ray Classification

Letter Designator Peak X-ray Flux (W/m?)
A <10’

B 107-10°

C 10°-10°

M 10°-10"

X >10™

X class flares have enough power that, if directed toward Earth, could disable satellites,
disrupt long range communications, and fail entire power grids. Flares within each
category are given a numerical sub-category. The scale is logarithmic with each
numerical class of flare having ten times greater peak X-ray flux, than the previous class.
Since the highest classification is X, an exception has been made in the numbering
system to allow flares higher than X9. The largest recorded flare to date was an X45 on 4
November 2003, and while powerful enough to have destroyed Earth’s satellites, power
grid, and the economy, the planet narrowly avoided the stream of deadly particles and
radiation released by this storm. [Thomson 2004]. The X-ray classification system, based
on precise timing and measurements by standardized equipment, will be the system used
and referenced for the duration of this research.

The introduction of space-based observations has provided an understanding of
the structure and mechanics of a solar flare. The distinct processes of how a flare occurs,
how the radiation is produced, and how the energy is released are important aspects in
understanding and, possibly, accurately predicting solar flare events. The current

understanding of flare dynamics begins with the interweaving of the complex network of
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magnetic field lines arching in and out of the solar surface. It is possible for the field lines
to become so tangled that they snap and recombine in a powerful release of energy (see 1
in Figure 2-3 below). The reconnection of the magnetic field lines creates the flash of the
solar flare and corresponds to the most massive release of X-ray and EUV radiation
during the flare event. Solar plasma is accelerated both back toward the sun’s surface and
away from the sun creating radio bursts (see 2 in Figure 2-3 below). If accelerated fast
enough, the plasma may escape the sun’s gravity and launch into interplanetary space
creating coronal mass ejections (CMESs) and energetic proton events (see 3 in Figure 2-3
below). Particles that do not escape, or that are accelerated back toward the sun, can
become caught in the new magnetic field lines. These particles release radio
gyrosynchrotron radiation, which is caused by the direction of the charged particles’
motion changing as they spiral along the new magnetic field lines. Particles forced
downward from the upper parts of the solar atmosphere rapidly encounter the higher
densities of the lower atmosphere, producing Bremsstrahlung in the X-ray and radio as
particles slow and deflect during interactions with like charges (see 4 in Figure 2-3
below). Energy trapped by the new magnetic field lines near the base, or footprints, of the
flare creates heating of the plasma near the sun’s surface, causing it to rise. The plasma
follows paths between the new field lines known as flux tubes creating a flare loop (see 5
in Figure 2-3 below). The heating and cooling of the plasma as it rises and falls within
these tubes produces soft X-ray and EUV emissions. Additionally, some particles get
trapped in the upper atmosphere of the sun, becoming part of new coronal loops (see 6 in
Figure 2-3 below). Particles that fall into this path emit soft X-rays and radio emissions as

they alter their directions and spiral around these altered field lines.
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Figure 2-3. Geometric Structure of a Solar Flare. Adapted from Fig. 1 [Holman 2012]
Reproduced with permission from Holman, Gordon D. “Solar Eruptive Events,”
Physics Today, 56-61. (April 2012). Copyright 2012, AIP Publishing LLC.

There are four major outcomes from a solar flare: proton events, CMEs, nuclear
reactions, and electromagnetic radiation emissions in the X-ray and EUV regions of the
spectrum. Proton events are streams of highly energetic particles accelerated away from
the sun by flares or CMEs. If these protons enter the Earth’s magnetic field they can
disrupt the charges already present and create new and potentially powerful electrical
currents in the near-earth environment. The radiation and currents are hazardous to

spacecraft and can be especially harmful to humans in orbit. The effects in the ionosphere
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are seen when protons spiral toward the magnetic poles exciting particles in the
atmosphere which emit photons when they relax to their neutral state.

CMEs are massive bursts of solar wind and plasma accelerated to relativistic
speeds, creating shockwaves in the ambient solar wind that ripple through the solar
system. The plasma released by CMEs often carries its own magnetic field, which can
cause distortion of any other magnetic field it comes in contact with. CMEs are the cause
of geomagnetic storms that disrupt the magnetosphere and ionosphere. The most
noticeable impact of these geomagnetic storms is the aurora, which occurs when
electrons spiral along magnetic field lines toward polar regions, emitting UV and visible
light when electrons interact with and excite the atoms and molecules in the atmosphere.
As the particles return to their pre-excited state, they release photons. The diverse colors
result from the unique emission spectrum of each type of molecule. The atmospheric
currents caused by the electrons entering the atmosphere during these events can create
power surges and have the potential to cause widespread power outages. The third type of
event caused by solar flares is the nuclear reactions that send gamma ray bursts away
from the sun. Gamma rays are the most energetic emissions from the sun.

These emissions create problems both in orbit and in the upper regions of the
atmosphere. The X-ray and EUV radiation can penetrate the ionosphere and reach the
neutral atmosphere, increasing ionization through a process known as photoionization,
effectively lowering the boundary of the ionosphere. The rapid ionization of the upper
regions of the neutral atmosphere by X-ray radiation is one cause of sudden ionospheric

disturbances, and will be the main focus of this research.
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2.1.2 The lonosphere

The ionosphere lies in the uppermost region the Earth’s atmosphere, in which
there is always a nonzero concentration of ionized particles. The lower boundary of the
ionosphere is approximately 90 km above sea level. The upper regions of the atmosphere
are constantly bombarded by solar radiation and energetic solar wind particles. When the
neutral molecules of the atmosphere absorb photons or are impacted by high energy
particles, energy is transferred, increasing the kinetic energy of the neutral particles.
When enough kinetic energy is transferred, neutral particles may be promoted to excited
states, or ionized. Widespread ionization leaves behind a plasma that is approximately
neutrally charged with near equal quantities of both positive and negative charges. This
plasma exhibits a collective behavior governed by outside electric and magnetic fields.

The study of plasma in Earth’s ionosphere, dominates a large portion of the study
of space weather. Just as the motions of the neutral atmosphere define terrestrial weather,
the study of plasma movements defines ionospheric weather. There are three major
motions associated with ionospheric plasmas: gyrating motion around magnetic field
lines; oscillatory motion along magnetic field lines from north to south; and a drifting
motion as particles proceed zonally in orbit around the planet. During solar flares and
other solar events, the magnetic field of the Earth is disturbed and compressed, increasing
its intensity. The plasma in the upper atmosphere is subsequently disturbed as the charged
particles react to the changing magnetic field. Maxwell’s equations tell us that these
results will have rippling effects -- changing magnetic fields create new electric fields,

moving particles create electrical currents, and changing electric fields and currents
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create new magnetic fields. The series of reactions that take place after a solar event, until
the atmosphere returns to a quiescent state, are known as geomagnetic storms.

The other major component in ionospheric physics is the continual production and
loss of ions and electrons. The main production mechanism of charged particles in the
ionosphere is photoionization, which takes place when photons are absorbed by atoms or
molecules that transfer enough energy to the electrons of the particle to exceed the
ionization energy of the system. Photoionization is described by the chemical equation:

X + photon » X* + e~ (2-1)
Where X is any atomic or molecular species in the upper ionosphere. The ionization
energy for the reaction is the energy required for an electron to escape the
electromagnetic bonds holding it to the nucleus. The rate of ion production of a particular
atomic or molecular species can be described, by the Chapman production function:
P.(z,x) = I,exp[—Hn(z)a% sec y|no*n(z) (2-2)

In this equation, z refers to the height above sea level, y is the solar zenith angle, I, is the
unattenuated flux of the desired wavelength measured at the top of the atmosphere, H is
the neutral gas scale height (the characteristic length at which the absorbing species
decreases density exponentially with altitude), n is neutral number density of the
absorbing species, ¢® is the absorption cross section for the absorbing species for the
given wavelength of light, and # is the probability that photon absorption will result in an
ion-electron pair [Schunk and Nagy 2009]. The neutral gas scale height depends on the

temperature and mass of the species:

kTs(z)

Hy(z) = 2000

(2-3)
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where the subscripted s indicates which species is being analyzed, z again denotes the
height above sea level, Ts(z) is the temperature of the species at the indicated height, ms
is the atomic or molecular mass of the species, and g(z) is the force due to gravity at the
desired altitude. The neutral number density n(z) is also further defined using the

equation:
ns(2) = ny(zo)exp [~ 2] (2-4)

Where z, is a reference height where the density is already known and z is the height
where the density is unknown. Understanding the Chapman production function shows
that ion production is proportional to the intensity of incoming solar radiation, which is a
maximum at the top of the atmosphere, and the density of the atomic or molecular
species, which is a maximum at the bottom. A balance of these two is achieved at a
height, zmax, Which is defined as:

Zmax = Zo + HIn[n(zy)Ho® sec x| (2-5)
As seen in this equation, the height of maximum photoionization is dependent on the
angle of the sun and is a maximum when the sun is at its peak. To find the total ionization
rate, incoming radiation intensity and the absorption cross-section for each species must
be integrated across all wavelengths and the production functions must be summed
together for each species present at the desired altitude. Solar storms, particularly solar
flares, rapidly increase the amount of energetic radiation hitting the top of the
atmosphere, which rapidly increases the rate of ionization. This swift ionization of the
ionosphere is classified as a sudden ionospheric disturbance and is the main focus of this

research.
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Other sources of ion production include secondary ionization, particle exchange
and particle precipitation. Secondary ionization occurs when electrons emitted during
photoionization have enough kinetic energy to be able to ionize a neutral particle
themselves. While particle exchange is a source of ion production, it also results in the
loss of an ion, leaving the overall ion density the same. Charge exchange is a basic
transfer of an electron from one particle to another, generically described by:

X+Yt->Xt+Y (2-6)

Here, X and Y represent two different atoms or molecules. Particle precipitation is a
consequence of energetic particles entering the atmosphere, and is particularly important
in the upper regions of the ionosphere. High-energy electrons incident from the solar
wind enter the upper ionosphere with enough energy to knock bound electrons free from
their parent nuclei. This reaction can be written as:

X + eincigent = X" + €incigent t €retcasea (2-7)
Where X is again any atomic or molecular species present in the upper atmosphere. While
these processes play a role in ion production, photoionization remains the main source of
energy and ionization throughout all layers of the ionosphere [Prélss 2004].

As the ionosphere remains relatively stable, and is able to return to quiescent
conditions after a storm, it is obvious that there are also sources of ionization losses. The
main sources of ion loss are dissociative recombination, radiative recombination, and
charge exchange. Dissociative recombination is the most important loss process for
molecular ions. In this process an ionized molecule absorbs an electron and separates into
its constituents, forming two neutral atomic species. This process is described by the

generic reaction:
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XYT4+e 5X+Y (2-8)
Radiative recombination is the predominant loss process for atomic ions. In this process,
an atomic ion recombines with a free electron and excess energy from the reaction is
expended as radiation.

X* 4+ e~ - X + photon (2-9)
As this reaction consists of two particles combining into one, there is a very precise
combination of energy and momentum transfer required to satisfy conservation laws
making this reaction extremely rare in comparison to dissociative recombination. Charge
exchange was previously discussed in the context of ion production. While this process
results in the loss of a particular ion species, it does not affect the ion density of the
ionosphere as a whole.

While there are several production and loss processes in the ionosphere, the most
important is photoionization. As seen from equations (2-2) through (2-5), altitude plays
an important role in photoionization and thus the characteristics and behavior of the
ionosphere. Earth’s ionosphere is divided into three distinct altitude regions: the D
region, between 70 and 90 km above sea level; the E region, between 90 and 150 km; and
the F region, between 150 and 1,000 km. During the day, the F region is further divided
into two layers, F1 and the F2. The F2 layer extends from 200 to 1000 km and at night,
assimilates the lower F1 layer through recombination, dropping its lower boundary to
approximately 150 km. The F2 layer contains the highest electron density in the
ionosphere, as heavier particles are trapped at lower altitudes by Earth’s gravity. The
most common ions in the F2 region are atomic oxygen (O"). At the highest altitudes,

above 800 km, O gives way to hydrogen (H") and helium (He") ions as the ionosphere
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meets the boundary of, and merges into, the plasmasphere [Prolss 2004]. The majority of
ions in the F1 layer are nitrous oxide (NO") and O*. Since molecular ions are 10° times
more likely to recombine with an electron than atomic ions; without the ionizing
radiation from the sun to maintain ionization levels, NO* recombines with the available
electrons and return to its neutral state [Knipp 2011]. This recombination of NO™ makes
the F1 and F2 regions indistinguishable at night merging the two layers into a single F
region. The high electron density in the two F layers plays an important role in long range
communications having the greatest impact on high frequency (HF, 3 to 30 MHz), radio
wave propagation. This research will measure the ion and electron densities in each layer
using radio wave propagation.

The E region was the first of the three ionosphere layers to be discovered, by
Appleton and Barnett. The region was designated “E” for the reflected electric field they
found during their investigation of downward waves via atmospheric interference
[Appleton 1925]. The major ions in this region are molecular oxygen (O,"), molecular
nitrogen (N,*) and NO™ [Schunk and Nagy 2009]. The E layer is highly variable,
dependent on diurnal, annual, and cyclic solar activity. The E region has highest ion
concentrations during daylight hours, summer months, and solar maximum, the peak of
the eleven year sinusoidal rise and fall in total solar activity. While strongly ionized
during the day, recombination rates at night can cause the ionization of this layer to
decrease dramatically. When daytime radiation levels are low during solar minimum or
during winter months, the E region may disappear entirely in the hours before sunrise.

This region best reflects radio frequencies below the HF range, but at times of high
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ionization, can reflect frequencies into the Very High Frequency (VHF, 30 to 300 MHz),
spectrum.

The D region is the most important to this research. It interacts heavily with the
neutral atmosphere below. Due to high neutral particle density and high collision rates
between electrons, ion, and atoms and molecules, this region disappears within minutes
after the sun sets. The dynamic nature of this layer make it the most difficult to study and
understand. X-ray and EUV radiation play the dominant roles in the ionization of the D
region, with X-rays being strong enough to ionize all atmospheric gases and EUV
predominantly ionizing O and N [Knipp 2011]. The most notable feature of the D region
is that it contains negative ions as well as positive. The primary positive ions found in
this layer are molecular O, and NO, and the primary negative ions are nitrate (NO3"). N3,
N, O, and H,0O molecules also play important roles in the chemical composition of this
layer. During solar flares, when X-ray and EUV emissions increase exponentially, so
does the ionization of the D region. During strong solar events, ionization penetrates into
the neutral atmosphere, lowering the boundary of the D region to as low as 50 km. The
changing height of the D layer has noticeable impacts on the waveguide mode and the
long range propagation of low frequency (LF, 30 to 300 kHz), and very low frequency
(VLF, 3 to 30 kHz), radio waves through the atmosphere. This paper will focus on
propagation of LF and VLF radio waves, specifically those between 16.4 and 77.5 kHz. It
will also address the changes in signal strength as the height of the ionosphere varies with

ionization levels.
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2.1.3 Sudden lonospheric Disturbances

A sudden ionospheric disturbance (SID) is defined as a “rapid increase in the
ionization density” [Prolss 2004]. While SIDs are commonly associated with the D
region, enhancements can be seen in all layers of the ionosphere. The dramatic surge in
EUV and X-ray emissions associated with solar flares creates increased ionization in all
three layers of the ionosphere. This response happens within minutes with the onset of
increased radiation flux, while the decay times vary with altitude. The lower ionosphere’s
decay is follows the same pattern as the radiation flux enhancements, while the upper
ionosphere can take significantly longer for normal ionization levels due to the lower
recombination rates [Mitra 1974]. It has been shown that X-ray emissions play the
dominant role in the photoionization of the lower (D and E) regions of the ionosphere
while EUV has a more dramatic impact at higher altitudes in the F regions [Tripathi
2011]. The difference in ionization based on wavelengths logically stems from the fact
that the H and He atoms in the upper ionosphere have lower ionization energies than the
heavier atoms and molecules, such as O and N, which predominate in the lower
ionosphere [Prolss 2004]. While SIDs affect the entire ionosphere, their effects on the D
region and neutral atmosphere are most apparent due to the disruption of long-range radio
communications. X-ray radiation greatly increases the ionization levels and electron
density of the D region and upper levels of the neutral atmosphere, effectively lowering
the boundary of the ionosphere. As the upper regions of the neutral atmosphere
experience enhanced ionization, the electron density becomes comparable to that of the
unenhanced D region. This lowering of the ionospheric boundary affects both high and

low frequency radio transmissions. SIDs are characterized by the increased concentration
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of ions and electrons throughout the ionosphere and how they change the behavior of the
D region for a short period of time.

SIDs are categorized by the radio frequencies affected by the ionospheric
changes. Low-frequency waves are typically reflected by the electrons in the D region of
the ionosphere, while mid- and high-frequency waves have enough energy to propagate
through the D region. High-frequency radio waves reflect off of the E and F regions
where the electron content is higher. Depending on the frequency of the wave and how its
amplitude, frequency, and phase are affected, one of six classifications can be used to
describe the perturbations. Disturbances to low-frequency waves include sudden
enhancements of atmospherics (SEAs), sudden enhancements of signal (SESs), and
sudden phase anomalies (SPAs). Disturbances to high frequency systems are short-wave
fadeout (SWF), sudden frequency deviation (SFD), and sudden cosmic noise absorption
(SCNA). The changes created by SIDs to the lower ionosphere and the resulting effects
on LF and VLF radio transmissions due to the increased electron content will be the
focus of this research.

LF and VLF frequencies are most often used for long-range communications,
especially by the military. A variety of low-frequency signals, both natural and manmade,
propagate through the atmosphere. The first type of SID event effecting natural VLF
signals is a SEA. Lightning strikes produce a continuous spectrum of LF and VLF radio
waves. During SEA events, these naturally-occurring radio waves are enhanced by the
increased reflectivity of the heightened electron content in the D region. The effect of this

are most commonly heard as static in the background of radio speakers [Knipp 2011].
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SPAs affect manmade signals originating from the surface. These radio waves
reflect off the ionosphere and return to the surface beyond the horizon, making long
range communications possible. An SPA is the sudden phase shift of a VLF wave caused
by the decrease in height of the D region boundary, which alters the altitude of reflection
of the wave, and may prevent it from being received at the intended location [Knipp
2011].

SES events are similar to SEA events, except for man-made point sources rather
than the natural, widespread signals. In this type of event the amplitude of the VLF wave
is heightened, increasing the signal strength at the receiving station. These events mark
clear signal responses that mirror the rise and fall of the total electron content in the lower
ionosphere. This research focuses on SES events, measuring the changes in the amplitude
of LF and VLF signals from transmitters around the world.

High-frequency radio waves are also affected by sudden ionospheric disturbances,
but unlike LF and VLF signals, HF and VHF signals are absorbed rather than of
enhanced. SWFs occur in which there is a sudden decrease in the received signal
strength. This phenomenon was first observed in the 1930s by Hans Mdgel, a German
physicist working for Transradio in Berlin [Mitra 1974]. This type of event causes
degradation of received signals or, in extreme events, loss of the radio signals entirely.
HF and VHF waves have enough energy to propagate through the D region, and are most
commonly reflected off of the E and F regions of the ionosphere. During a SID, with the
increased ionization in the D region, HF and VHF radio waves are partially or fully

attenuated as they pass through this layer, both on the way up and again on the return trip
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downward. If the signal survives both passes through the enhanced D region, the signal
that reaches the receiver will be severely diminished.

SFDs usually affect transmissions that reflect at altitudes greater than 100 km
[Mitra 1974]. Waves that would usually reflect off the F1 or F2 region will experience a
sudden shift in frequency when the electron content in a lower region becomes high
enough to reflect the waves sooner than expected. This early reflection causes a Doppler
shift in the frequency of the wave resulting in missed transmissions with receivers
looking for the wrong signal [Knipp 2011].

SCNA s affect radio waves originating from stars and galaxies across the universe.
Cosmic waves typically lie in the HF range around 20 MHz creating a constant
background noise for receivers looking toward space. During SCNA events, the
heightened electron content in the D region absorbs this radiation before it can reach
Earth’s surface, diminishing or negating the usual signal.

All SID events are dependent on the photoionization of neutral atoms and
molecules to create a sudden increase in total electron content (SITEC) within the
ionosphere. Photoionization requires the increased radiation from the solar flares to be
directly incident on the ionosphere, so SIDS are exclusively a daytime phenomenon.
Despite this limitation, SIDs are one of three ground-based observation techniques (the
others are Ha imaging and radio burst monitoring) for identifying and studying solar
flares, and they play a vital role in the study of solar flare emissions and ionospheric
chemistry. The most common technique for studying SIDs is to monitor LF and VLF
transmissions through ground-based receivers for fluctuations in signal strength or

frequency. Transmitters broadcasting on a single, steady radio frequency have been
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established worldwide by military and emergency management agencies. These signals
can be monitored with an appropriate radio receiver. The American Association of
Variable Star Observers (AAVSO) maintains a global network of ground-based observers
monitoring SIDs continuously. AAVSO members and their archive of publicly accessible
data was invaluable to this research.

2.1.4 The Earth-lonosphere Waveguide Mode

While enhancements to the total electron content (TEC) can be seen in all regions
of the ionosphere, SID effects are most important in the D region, which has the greatest
impact on radio communications. During the day, the D region forms the upper boundary
of the Earth-ionosphere waveguide. A waveguide is formed by two boundaries through
which electromagnetic waves are passed along a sinusoidal path, bouncing between the
confining media. The Earth and ionosphere act as two approximately parallel conductors
at an average of 80 km apart, which create a waveguide mode for radio waves with
wavelengths of several km or less [Budden 1961]. The waveguide mode enables long-
range communication by propagating signals that would otherwise be restricted to line-
of-sight distances. The first instance of long-range communication occurred in 1901
when radio signals were first successfully transmitted across the Atlantic Ocean [Schunk
and Nagy 2009]. Initial theories of long-range propagation included diffraction around
only one conducting surface, but it was soon proven in that this method could not provide
enough strength to perpetuate the signal over the distances achieved. In 1902, the
existence of a layer of electrically charged particles in the upper atmosphere was
proposed as the source for the additional conducting surface [Schunk and Nagy 2009].

The existence and height of this layer was later confirmed in 1941.
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While the Earth and ionosphere can roughly be considered concentric spheres, it
is customary, for a basic understanding of waveguide modes, to ignore curvature and
treat both surfaces as planer. A second simplifying assumption is to treat the ionosphere
as a sharply defined boundary at a fixed height. This boundary is defined by a change in
the index of refraction, n, between the atmosphere and ionosphere. The refractive index is
the ratio of the speed of light in a vacuum to the speed of light in a medium. The index of
refraction for Earth’s atmosphere is 1.0002. In a plasma, such as the ionosphere, the

refractive index, in Sl units, is defined by:

n = J1— NeeZ \/1—80;62”@ (2-10)

EgMew?

Where N. is the electron density, e is the charge on an electron, ¢ is the permittivity of
free space, w is the angular frequency, and f is the wave frequency of the incident
electromagnetic wave [Knipp 2011]. As seen from equation 2-10, as the electron density
increases, the index of refraction decreases. When a wave encounters a variation in
refractive index between two media, it is refracted, or bent. A higher refractive index
indicates a greater refraction of the wave (see Figure 2-4 below). The angle of refraction
at the boundary between two media is defined by Snell’s Law:
n;sin@; = n, sin6, (2-11)

In this equation n; is the index of refraction for the medium the wave starts in, 6; is the
angle of incidence, n; is the index of refraction for the refracting medium, and 6 is the
angle at which the wave is refracted. When 6, > 90°, the wave is reflected instead of
refracted, so that the wave returns to the original medium instead of proceeding to the

next. The electron content of the ionosphere determines its index of refraction and
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therefore the propagation path. When plasma density is enhanced, the propagation path is

altered and signal amplitude effected.

Figure 2-4. Electron density, Ne, increases with altitude, index of refraction, n, decreases
with altitude, which increases the angle, 6, at which a wave is deflected from the vertical.
When the angle of refraction angle reaches 90 degrees, the wave is reflected off the
ionosphere and returned to Earth.

Previously, the ionosphere was assumed to be a sharp boundary. This is obviously
not true, as electron density changes diurnally as well as seasonally and during any space
weather events. Even on a quiet day with no space weather impacts, the electron density
varies as a function of altitude. Therefore, it is a convenient and simple model to
characterize the structure as multiple layers stacked on top of each other with each

boundary defined by a change in refractive index. This is a useful approximation as the
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scale of ionospheric anomalies is usually smaller than the scale of the wavelength of VLF
radio waves which range from approximately 10 to 100 km [Wait 1962]. As the
ionization and electron content of the atmosphere increases, the index of refraction
decreases, slowing the wave and refracting it toward the boundary between the two
media. As the wave passes through consecutive layers of the ionosphere, the angle of
refraction becomes larger and the path of propagation becomes more horizontal. When
the angle of refraction exceeds 90 degrees, the wave will experience reflection and will
begin a return path back to Earth. On the way down, the wave experiences higher indices
of refraction, bending the wave further from boundary, and creating a parabolic
trajectory.

So far, only reflection from one boundary has been considered which only allows
for one bounce and no further propagation. In order to create a waveguide, a second
boundary must be introduced. In most cases, Earth’s surface, as the second boundary of
the Earth-lonosphere waveguide, is considered to be a perfect reflector, returning a wave
at the same incident angle from which it was received. [Budden 1961]. If a wave leaves
the surface with a zenith angle, 6, it will be reflected downward by the boundary with the
same angle nadir angle, 8. When the wave reaches the surface, it will again be reflected at
the same zenith angle. If the reflection coefficients of the two boundaries, R; and R,, and
the height of the second boundary, h, are known, the full path of the wave can be
described by the fundamental equation of mode theory [Budden 1961]:

R, (0)R;(B)e(~2ikhsin®) — 1 (2-12)
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A wave mode exists when an integral number of half cycles occur between the ground
and the ionosphere [Budden 1957]. When the ionosphere is perturbed, and the

waveguide’s upper boundary changes, the wave inside the guide is subsequently affected.

lonizing x-rays from solar flare

Atmosphere

Figure 2-5. The propagation of VLF radio wave along the Earth-lonosphere
Waveguide. [Stanford 2011]

2.2  Equipment
2.2.1 GOES-15 and the XRS
The National Oceanic and Atmospheric Administration (NOAA) has operated

environmental satellites for over fifty years. The environmental satellite program can be
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traced back to the Eisenhower administration and the establishment of the National
Aeronautics and Space Administration (NASA), but it wasn’t until the 1970s that the first
geostationary weather satellites were launched. The first geostationary satellite dedicated
solely to meteorological purposes was the Synchronous Meteorological Satellite 1 (SMS-
1) in 1974, which was followed closely by SMS-2 in 1975. These two satellites were
prototypes and foundation for the Geostationary Operational Environment Satellite
(GOES) program. The GOES program, since its founding, has been a partnership
between NOAA and NASA. GOES-1 launched eight months after SMS-2 in October
1975 [Davis 2011]. The GOES satellites monitor both terrestrial weather and space
weather. Each satellite since the SMS series has carried a Space Environment Monitor
(SEM) containing a magnetometer, an X-ray sensor (XRS), and an energetic particle
sensor (EPS). Beginning with the GOES-12 satellite, the Solar X-ray imager (SXI) was
also added, followed by the Extreme Ultraviolet Sensor (EUVS) on GOES-13, GOES-14,
and GOES-15. The GOES program has been extremely successful and beneficial to the
meteorological community. Four additional launches beginning in 2016, will comprise
the fourth generation of GOES satellites.

The GOES-15 satellite, designed by Boeing, is the newest GOES satellite in orbit.
Launched in March 2010, it inhabits a geostationary orbit, 35,786 km above Earth’s
equator at 135° W, approximately halfway between Hawaii and the west coast of the
United States. Its payload contains four instruments for monitoring space and terrestrial
weather; the GOES imager, GOES sounder, SXI and SEM. The imager monitors five
wavelengths in the visible and IR bands to observe Earth’s surface, oceans, and cloud

cover. The sounder uses multispectral IR data to create vertical temperature and moisture
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profiles assimilated into weather models to improve forecasting. The SXI images the
sun’s X-ray output for the purpose of providing early warning signs of solar flares. The
SEM contains the EPS, XRS, and the EUVS, and monitors X-rays, EUV, and energetic
particle emissions from the sun as well as fluctuations in the Earth’s magnetosphere. The
GOES-15 satellite has been operational since October 2010 and is the last of the third
generation GOES satellites.

Each GOES satellite is equipped with two X-ray sensors, one for monitoring the
0.5to 4 A, or short band, and one for the 1 to 8 A, or long band. The data are collected at
two-second intervals and compiled by NOAA’s Space Weather Prediction Center
(SWPC) into one minute and five minute averages for plotting and public use. The data
are grouped by day from 00:00:00 to 23:59:59 UT. The raw data and plots are available
on NOAA'’s website for public use and education. The GOES-15 XRS on board GOES-
15 extends from 16 October 2010 to the present. The GOES-15 XRS is the current
international standard for measuring X-ray flux and classifying solar flares, and was used

for the X-ray data for this research.

2.2.2 SID Monitors

Monitoring of SES strengths was first accomplished by a research group from
Cambridge in the late 1940s. The group recorded the 16 kHz signal of the transmitter in
Rugby, England, with the call sign GBR, emitting from three monitoring locations across
the United Kingdom: Cambridge, Aberdeen, and Edinburgh [Mitra 1974]. The design of
these original monitors is still widely used today with the signal received by a simple

loop antenna and passed through an amplifier.
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This project initially intended to use data from the Stanford University Solar
Center solar center SID monitor network. During the International Heliophysical Year of
2007 and in partnership with the United Nations Bureau of Space Sciences, Stanford
University’s Solar Center and Electrical Engineering departments created a low cost SID
monitor that was designed for distribution and use in all 193 countries around the world
[Stanford 2007]. These monitors were designed to be built for under $100, used with any
computer, and set up in a matter of hours. The design developed by Stanford was based
on the receiver used by the American Association of Variable Star Observers (AAVSO),
with modifications for easier set up and calibration. The Stanford program also
established an online database for users to upload their data. Stanford provided
instructions for building an inexpensive, efficient loop antenna consisting of square
frame, 1 — 2 meters across, made from a non-conducting material wrapped 50 - 100 times
with an insulated wire.

The SID monitor passes the raw signal through an amplifier, filters it by
frequency, and converts it into a voltage signal. The signal strength is then plotted using
software provided with the SID monitors. An ideal signal during a quiescent day will be
stronger at night, variable during sunrise and sunset, and weaker during the day. The
daytime signal is lowest after sunrise and before sunset and highest at local noon (see
Figure 2-6 below). During a day with high solar activity, spikes of strong signal strength

mark the occurrence of solar flares.
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Figure 2-6. Top: 1deal signal for a day with no ﬂares Bottom: signal example for a day
with multiple flares. Adapted from Stanford’s SID User’s Manual [Stanford 2007]

While a noble venture, the Stanford SID program has fallen widely into disrepair.
The organizers of the project and custodians of monitors have moved on, leaving sensors
forgotten, uncalibrated, or broken. The database of over 225 stations has minimal current
data, much of which is unusable due to noise and outside interference (see Figure 2-7
below). Two of the three monitors located on the Stanford campus itself are no longer in

use, and the third needs to be recalibrated.
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Figure 2-7. Plots from Stanford’s SID database for 10 June 2014. Two different monitors
looking at the same transmitter during two X-class solar flares. [Stanford 2014]
Top: Example of a working monitor. Bottom: Example of a noisy, uncalibrated monitor.
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Fortunately, the AAVSO also maintains a collective database of SID occurrences
dating back to 1982. The AAVSO database rates SIDs in intensity from -1 to +3, but no
numerical data is provided on the details of signal enhancement. Numerical data is found,
though, on some private websites running SID monitors. Two of the sites accessible via
AAVSO’s website became the foundation for data access for the remainder of this
project. The first data source was SID monitor A131, run by Jan Karlovsky of the
Hlohovec Observatory in Slovakia, and the second was A118, privately run by Lionel
Loudet, in Southern France. Information provided by Loudet includes detailed
instructions for building both an antenna and a monitor, complete with schematics for
how to design the circuit board. The antenna design is very similar to that of Stanford’s
loop design. Loudet’s SID monitor filters the received VLF signal to the desired
frequency, amplifies it, runs it through a bandpass filter to tune the signal, and converts it
to a format readable by a computer (see Figure 2-8 below). Loudet also provides the

necessary software and tools to calibrate the SID monitor and connect it to a Linux- or
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Windows- based computer [Loudet 2013]. Whether privately-designed or mass-produced,
the goal of the SID monitors remains the same, to allow interpretation of VLF signals.
The wide access to publically available data from SID monitors around the world allows
anyone to become an amateur astronomer or space weather scientist and allows

professionals to collaborate with others across the globe.
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Figure 2-8. Block diagram of functions of a SID monitor. [Loudet 2013]
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I11. Methodology

This chapter includes a discussion on the methodology used to collect and process
the data from SID monitors and from the GOES-15 X-ray sensor. The first section will
focus on the data collection and organization. Specifically, it will focus on the Stanford
University Solar Center SID Program database and discuss why, as the primary data
source presented with the project, it was discarded. Next, it will discuss the finding and
acquisition of new data from both the Hlohovec Observatory and Loudet’s site from
Southern France. The second section includes discussion on the development of the
MATLAB code used to process and analyze the data.

3.1 Data Collection
3.1.1 GOES-15 XRS Data

This study began with a proposal from the Air Force Research Laboratory,
Space Vehicles Directorate, Kirtland Air Force Base, New Mexico. The first data
provided, and the foundation for the project, was a list containing every M- and X-class
solar flare recorded by the GOES-15 satellite from May 2010 through June 2014. This
list comprised a total of 490 significant flare events. Each flare was listed with the date,
UTC time, class, and magnitude (see Table 3-1 below). This list defined the search days
for SID and GOES-15 data collection. GOES-15 XRS data were obtained via the NOAA
website in .netCDF file format for each day in which there was an M- or X- class flare.
The data was provided in two sets, long X-rays, 1-8 A and short X-rays, 0.5-4 A (see

Figure 3-1 below).
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Table 3-1. AFRL Example Data

15 u 56 X 2.2
GOES XFCI)I Flusx (5 minute thCl) Begin: 2014 Jun 9 0000 UTC
10—2 T T T T T T T é T T T T T 2 T T T T T T T g
197° = £ g5 «
= g 3x @
g - —| o
107* = { = 4 4
: E E
! - - ll B
E 10 = = g 0
14| = = e &
o] = z o~
o -5
= 10 o =
= = = <
l I = 5 AR
- 1 <
10 7 ; = ul-’
: .
1078 b
3 n
3 =
= - (=)
197* N LT i R - A t A
Jun @ Jun 1Q Jun 11 Jun 12
Universal Time
Updated 2014 Jun 11 23:55:11 UTC NOAA /SWPC Boulder, CO USA

Figure 3-1. Plot of X-ray flux as recorded by the GOES-15 satellite. 5 minute average
compiled by NOAA and updated daily. [NOAA 2014].



3.1.2 Stanford University Solar Center SID Monitor Data

At the start of this project, in June 2014, the Stanford database contained data
from 925 individual SID monitors. The monitors are divided among 225 operators in 38
countries spanning all seven continents, with some operators maintaining 20 monitors at
once (see Appendix A). Each SID monitor analyzes one of 66 transmitters located around
the world that each emit a steady LF or VLF radio signal ranging between 16.3 and 81
kHz (see Appendix C). Organization of this expansive database was by far the most time

consuming portion of the data collection process.

Figure 3-2. Standford Solar Center SID Monitor [Stanford 2007]

The Stanford database and user interface is well organized and easy to manipulate
and understand. The default display, upon opening of the webpage, shows all of the
monitors with data available for the current date displaying on a series of 24 hour graphs
from 00:00:00 to 23:59:59 UTC. Each graph gives a plot of modified signal strength

versus time labeled with the monitor name, numerical designation, and the transmitter
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signal being recorded. There are options to change the duration of the graph from 1 day
to 1 hour, 6 hours, or 3 days. Additional display options include vertical sunrise and
sunset arrows for both the monitor location and the transmitter location, and times of any
solar flares for that day as recorded by the GOES satellites. The solar flare options enable
further grouping of flares, A through X, C and above, M and above, and X flares only.
There are options available to search for data by date or by monitor in order to locate
specific data. The monitor database allows the user to search by monitor name, station
name, station location, or transmitter being monitored. Widespread network data is
available from 2007, but there is also data available in the “View Data by Date” section
from October 2005 to present for the two monitors on the Stanford campus. Most
important, there is a link at the top of the page to “Download Data Files”. This link takes
the user to a page with additional links to a series of .txt files. The page includes one link
for every monitor selected for graphical display, and the numerical data used to make the
plots. The files provided are listed by monitor name, transmitter being monitored,
monitor numerical designation, date, and time. The text within the files contains header
information about the station location, UTC offset, transmitter call sign, transmitter
frequency, monitor identification number, and daily min and max values. The body of the
data is provided in three columns at a five second sample rate containing date, time, and
recorded signal strength. Data and plots are updated hourly to provide the most current
information.

The first step organizing the Stanford SID data was to consolidate from 925
individual monitors down to just the 225 stations. Of the 225 stations included in the

online database, only 135 provided a country of origin. As research on SID phenomenon
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commenced and study of the plots on Stanford’s website continued, it became obvious
that the monitor location and sunrise and sunset indicators were going to play a major
role in filtering the useful data from the meaningless. As discussed in chapter two, SIDs
are exclusively a daytime phenomenon. Therefore, in order for a SID to be detected, both
the transmitter sending the signal and the monitor receiving it must be in daylight. With
this knowledge, the next step in organizing the data became to determine precise monitor
and transmitter locations.

The Stanford Solar Center SID monitor home page includes a list of 41 of the
most popular VLF transmitters across the globe. The spreadsheet contains the transmitter
name and its frequency, city, country, latitude and longitude. Additionally the SID
database contains a link to a “Map of Monitors” which contains an interactive Google
Earth map marking the location of 338 SID monitors in 52 different countries (see
Appendix B). The Google Earth markers provide city, country, latitude, longitude, site
identification code, name of the school or organization hosting the site, and the monitor
numerical designation. The first major problem arose when the map of monitors and the
SID database did not match. Only 75 of the site identification codes, of the 225 from the
database and 338 from the map, coincided. This fact diminished the number of
potentially useful data sources by two-thirds.

The next step in the organization process became determining the usefulness of
the data available. This process began with selecting each station individually, then using
the tool to “View Data by Date”. This course exposed the second major difficulty with
the Stanford data source. While each monitor in the database had data available, some

provided data for as few as four days out of the seven or more years the project was
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running. Other monitors ran for a year or two before shutting down, which meant none of
the data available coincided with the full GOES-15 satellite archive, effectively
eliminating them as data sources for this project. Other monitors ran intermittently.
Without a consistent SID dataset, the goal became to determine if any available data
matched the list of flare occurrences provided by AFRL. The search began by looking
specifically at X-class flares, limiting the number of flare occurrences from 490 to 34. Of
the 75 monitors with known locations, only 27 recorded data during an X-class solar flare
that was also reported by the GOES-15 satellite. Only one monitor in Germany provided
data during all 34 X-class flares, while other monitors recorded less than 5.

The final step was to determine the timing of the flare relative to the sunrise and
sunset time of the monitors and transmitters recording the SIDs. In order for the signal to
be intensified by a SID, the flare needs to occur when both the transmitter and the
receiving SID monitor are in daylight. There was large distance between some Stanford
SID monitor locations and the transmitting stations they monitored. For example, the
monitor in Germany which recorded data during all 34 X-class flares, receives its signal
from a transmitter in Cutler, Maine. The large distance between this monitor and
transmitter allows, at best during the summer solstice, just under 10 hours where both
locations are in sunlight. During the winter solstice, there is as little as two hours of
shared daylight time between the two locations in which to potentially capture solar flare
data. For this particular station, approximately half of the 34 flares occurred when both
the monitor and transmitter were dark, as would be expected with diurnal changes in
sunlight. Another ten X-class solar flares were lost due to only one location being in

daylight. Overall, only four of the X-class flares were recorded when both the monitor
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and transmitter were in daylight. The other sites proved similarly disappointing, and even
X-class flares that were recorded were corrupted by noise and poor calibration.

Stanford’s SID monitor data proved unusable because the low price and mass
distribution of monitors led to a lack of maintenance and calibration. A number of
explanations could be given for individual monitor failures and signal degradation.
Antennas could have been built with inadequate materials, or set up in locations with
severe interference. They could also be subject to weathering. Monitors may never have
been calibrated properly or lacked regular maintenance to ensure signal quality. Monitors
given to universities and high schools were likely adopted by students one year and
passed along to the next, or forgotten after a research project was finished. One such case
was the Stanford SID monitor given to the United States Air Force Academy. The
monitor was operated for two months as an independent study by a student in 2008 and
2009. When queried about the monitor in 2014, the student’s department found it in a
storage closet with the antenna in disrepair. While the database still exists, even the group
that founded the project has moved on, leaving the website to run itself. During data
collection for this study, the server for the database failed and was not restored for two
weeks because the current project leader was unaware of the problem. Ultimately, the
data from Stanford’s Solar Center SID Monitor Database was abandoned due to minimal
usable data and poor data quality.

3.1.3 AAVSO sites: Hlohovec Observatory and Southern France

During the Stanford server outage, the search began for a new SID monitor and
VLF data source. A website for the Hlohovec Observatory in Hlohovec, Slovakia was

discovered and the data for its privately run SID monitor were discovered via the
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AAVSO; its observer code is A131 (see Figure 3-3 below). The Hlohovec Observatory
website is operated and its data maintained by Jan Karlovsky, who proved extremely
helpful for this project. The observatory’s SID webpage contains multiple visual
representations of SID and solar data: an hourly plots of three different transmitter signals
versus time with the most recent data; a 24 hour plot of the same three transmitters on the
current day; a 24 hour plot of 10 transmitters side by side along with a plot of background
level noise; 6-hour GOES X-ray flux data; 3-day GOES X-ray flux data; 6-hour Solar
Dynamics Observatory (SDO) Extreme Ultraviolet (EUV) Variability Experiment (EVE)
data; 3-day SDO-EVE data; and the latest image from the SDO magnetogram [Karlovsky
2014]. The webpage also provides links for other monitoring stations and a series of
educational links providing information on space weather and sudden ionospheric
disturbances. The website also provides archives of overall monthly solar activity since
2011. The key to this project was in the link to the ‘data center’ where the numerical data

and basic plots for 2014 could be downloaded.
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Figure 3-3. Google Earth image of SID monios (rn) and L transmitters (red).'

The Hlohovec website provided daily plots and raw numerical data from the DHO
transmitter in northern Germany, at 23.4 kHz, for all of 2014. The data was provided in
.dat format aligned in two columns with time in seconds since midnight and signal
strength in decibels. Data was sampled every 60 seconds from 0 to 86,280 seconds, or
00:00:00 to 23:59:00 UTC. Scrolling over the link to each file shows a visual preview of
the graph the raw data will produce. The signal strength seen in the plots contained
minimal noise, was received from a transmitter in the same time zone, and had data for
every day of 2014. The site, however, was lacking any older data from previous years.
The site author was contacted and he responded with data available for DHO from 2011
at a one-second resolution. In total, he sent 158 files containing all of the SID monitor
data available corresponding to the days with solar flares. Finally, with a reliable and

consistent source of data, data processing could begin.
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While the Hlohovec Observatory offered a promising source of VLF signal data,
it only provided data from one transmitter to one monitor. Another data source was
desired for contrast, quality control, and ideally a comparison of how different frequency
signals responded to the same flare event. The site in southern France, AAVSO code
A118, run by Lionel Loudet, presented this second data source. This site provides radio
signal data from one monitoring site that receives from nine different LF and VLF
transmitters at various distances and frequencies, including the DHO transmitter observed
by the Hlohovec Observatory. The monitoring site receives signals from GBZ (19.58
kHz) in Great Britain, ICV (20.7 kHz) in Italy, GQD (22.1 kHz) in Great Britain, DHO
(23.4 kHz) in Germany, NAA (24.0 kHz) in the United States, TBB (26.7 kHz) in
Turkey, NRK (37.5 kHz) in Iceland, NSY (45.9 kHz) in Italy, and DCF (77.5 kHz) in
Germany (see Figure 3-3 above). Loudet’s website includes extensive narrative about
SID events, the ionosphere, solar activity, radio signals, and details about the station and
SID monitor. It also provides numerical and graphical data as far back as 2005 at ten-
second resolution. An interactive graph provides GOES X-ray flux data and the ability to
include any or all of the nine radio signals available. Downloadable files are provided in
.txt format in a zipped folder containing all of the selected transmitters. Each .txt file
contained three columns: a date, time (in hour, minute, second format), and signal
strength. Loudet also provides a series of programs and base code using C to help analyze
the data available and to interpret data from any new monitors developed using the
schematics provided. The “SunTimes” program, which determines the sunrise and sunset
times for a given location and date, proved particularly useful for helping to sort and

analyze data.
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3.2 Data Processing

The data from both AAVSO sites comprised, 2,625 text files. Sorting through this
massive amount of data and pinpointing exact times of solar flares in thousands of rows
of text became the major challenge. Coding was done using MATLAB R2014b, and
using Microsoft Excel as an intermediary to store spreadsheets of data for both input and
output. The first goal in organizing the data was to combine AFRL flare data, GOES-15
X-ray data, and SID monitor data into one file, in order to present a side by side
comparison of X-ray flux and VLF signal strength. The second major goal was to find a
precise maximum value and time of occurrence for short and long X-ray flux and VLF
signal strength. Coding began with the data from the Hlohovec Observatory as the use of
only one transmitter simplified the process.

To start, AFRL text data was tabulated into seven columns for the day, month,
year, hour, minute, class, and magnitude for each solar flare. The spreadsheet was read
into MATLAB. Variables were assigned to each column of data and empty columns were
created to mark places for the incoming GOES and SID data. The new columns created
held places for the peak short X-ray flux, the time of the peak short X-ray flux, the peak
long X-ray flux, the time of the peak long X-ray flux, the time of maximum VLF signal
strength, and the time of the maximum VLF signal strength. The final part of the program
introduction established counters to run through a loop for every flare provided in the
AFRL database.

The first challenge presented was converting the tabular flare data into file names
in order to match specific GOES and SID data files. The problem was single digits in the

days and months were read in as single digits, and years as four digit number while the
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file names for GOES and SID data were provided in yy/mm/dd format. In order to create
file names, variables were created for the day, month, and year using the ‘num2str’
command converting numbers from the table into text data. Then, to create double digit
format from a single digit number, a series of ‘if’ statements was used along with
‘strcom’ to compare the date values to the numbers 1 through 9. If a single digit was
encountered, the text value was changed to add a 0 in front of the digit, for example 1’ is
changed to “01°. A similar process was used to drop the first two digits of the four digit
year. With this accomplished, a full file name could be provided to MATLAB to look for
a specific folder path and file name.

The second challenge appeared when a date from the solar flare data did not exist
in the Hlohovec Observatory folder. When this happened, the program ended in an
infinite loop trying to pull data from files that did not exist. This required a simple fix of
an added ‘if’ statement to check if the filename existed. If the file existed, the program
continued and opened the files. If not, it proceeded to the next flare by adding one to the
loop counter and returning to the beginning of the program. The .netCDF format of the
GOES-15 files was read by the intrinsic MATLAB command ‘ncread’, and the .dat
format of the Hlohovec SID monitor data was read using the ‘importdata’ command.

The third data processing challenge came in the form of the different time
formats. GOES data was provided in UNIX-epoch time, or number of seconds since 1 Jan
1970, Hlohovec data was provided in seconds since midnight, and French data was
provided in hour, minute, second format. In order to convert the times into the same
format, two separate scripts were written: ‘converttime’ to work with the UNIX-epoch

time, and ‘converttime2’ to work with the hour, minute, and second format. These two
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programs converted the times into an hour decimal format that would be easy to plot in a
24 hour format. Once all the data was on the same timeline, the next step was to create
the visual comparison by plotting the data. The first plot created was a 24 hour snapshot
of short X-ray flux, long X-ray flux, and VLF signal strength (see Figure 3-4 below). The
y-axis was plotted on a logarithmic scale to enhance the variance of the signal
fluctuations. With X-ray flux increasing by as many as four orders of magnitude during a
solar flare, much of the detail of the X-ray flux was lost on a linear scale while the sun
was quiet. Next, using the AFRL flare data, the time and class of each flare was indicated
with M-class flares marked with a vertical magenta lines, and X-class flares being

designated by black lines.

y X-Ray Flux and SID signal strength for 11062014
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Figure 3-4. Example of a 24 hour plot from Hlohovec Observatory and GOES-15
hard X-ray flux (blue), soft X-ray flux (red), VLF modified signal strength (green),
M class solar flares (magenta), X class solar flares (black).
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The 24 hour plots allowed a direct comparison between signal strength and X-ray
flux. The plot in Figure 3-4 was chosen as an example, not because it was ideal, but
because it presented a variety of information. The plot contains both M- and X-class solar
flares as well as a flare at night. It demonstrates the difference between the day and night
signal strength, and that SID events are not recorded by VLF signals before sunrise or
after sunset. Multiple C-class flares can be seen in the X-ray plots, however, these flares
are not strong enough to significantly modify the ionosphere and no SID is observed with
these events. It also demonstrates a loss of data around 0700 UT. This particular outage
occurred when the transmitter stopped broadcasting, which was determined by the loss
was observed by both the monitor in Slovakia and the monitor in France. Data from
several SID events were lost when flares occurred during similar outages which lasted
hours to days. Flares that occurred during near the day-night transitions were also lost in
the signal fluctuations. All of this had to be considered in processing and analysis, to
distinguish valid SID data from erroneous data recorded during these times.

The fourth challenge came in determining if there was more than one flare on the
same day. A ‘while’ loop was created to determine if the next flare in the table had the
same date as the flare before it. If so, another vertical line was added to the 24 hour plot
to mark any subsequent flares. Once no more flares were found for the day, the 24 hour
plot was complete, a new folder was created for the day, and the image saved. A counter
was included in the ‘while’ loop to track the number of extra flares for the day, which
was then subtracted upon exiting the loop in order to return to the original flare being
analyzed. This process enabled the second goal of finding a precise maximum value and

time of occurrence for the X-ray flux and VVLF signal strength for each flare.
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The first step in accomplishing the second goal of finding a precise maximum
value and time of occurrence for each the short and long X-ray flux and VLF signal
strength, was to bracket the flare with a specific time window to block out any larger
signals during the day, such as nocturnal returns or stronger flares. The bracket was set to
10 minutes before the flare to 50 minutes after in order to capture both the pre-flare and
decay phases for the majority of flares. With the restricted timeline, a new plot was
generated showing the 1 hour zoomed-in snapshot of each flare (see Figure 3-5 below). A
new filename was created for each plot, and the figures were saved in the same folder as

the 24 hour view.

X-Ray Flux and SID signal strength for 11062014
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Figure 3-5. Example of a 1 hour zoom around a solar flare
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The fifth challenge was finding the location of the start and end times in the data
arrays. The first barrier in this challenge occurred with flares at either the start or end of
the day where the 1-hour limit exceeded the 24 hour time line and a value did not exist in
the GOES or SID array. This was overcome by logic recognizing when the pre-flare
boundary was less than zero or the post-flare boundary was greater than 24, and resetting
those boundaries accordingly. The second barrier arose with the start and end time arrays
containing zero values. To find the start or end time, the desired time was subtracted from
each value in the data array and then a search was conducted to find values differences
smaller than the time step in seconds divided by 3600 seconds per hour. Most often, a
zero value for the array would occur during a data drop-out where that time would not
exist. To solve this, time was gradually subtracted at the start or added at the end in ten
second intervals to increase the time bracket in order to find the edge of the data drop. A
counter was included on this check, and if ten minutes in either direction was exceeded, it
was assumed that the data drop was extensive enough to alter the data and the run was
discarded, returning to the start of the program. If a value was found before the limits
were reached, the start or end value was established and the run would continue.

The next step in finding the maximum values was to use the starting and ending
brackets for the array to narrow a search for the largest X-ray flux and VLF signal values
and their time of occurrence. The maximum value was easiest to find using the ‘max’
command to find the highest value within the bounds of the start and end values. The
timing was more complicated. The first task was to find the position in the array where

the maximum value occurred.
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The final programming challenge arose when more than one value in the array
held the maximum value. This most often occurred when the flare was at night and there
was no peak value for the flare. When this occurred, a filter was applied to find the first
location within the bounds of the start and end times. In order to find the time, the value
contained in that spot of the array was recorded. After this was accomplished, the process
of zooming in, plotting, and recording maximum values and times had to be repeated for
each consecutive flare for the same date. This required proceeding to the next flare in the
AFRL database without accessing new GOES or VLF signal data until all the flares for a
single day were recorded. Once each day was completed, the next file with SID data was
found along with the corresponding GOES data and the process was repeated. As the
program runs, the arrays initialized in the beginning for maximum X-ray flux values,
maximum SID values, and times of occurrence will be populated. At the completion of
the program the six new column arrays are compiled into a single table and then
combined with the existing flare data. Finally, the resulting table is exported to a
spreadsheet for analysis.

A second program was required to process the French data. This program was
structured nearly the same as the program for the Slovakian data, but involved the
additional loop structures needed to accommodate data from all nine transmitters for each
flare. The other major addition to this program was the use of the “SunTimes” code
provided by at Loudet’s website [Loudet 2013]. This addition provided a major challenge
since it was written in C. The purpose of the program was to find the sunrise and sunset
time for given coordinates on specific days. This was necessary to filter the flares that

occurred before sunrise or after sunset, to cut down on program run time and post
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processing analysis. Minor alterations made to the original code included running it for
multiple days instead of a single day and exporting the output to a spreadsheet. With
almost 2,500 files from the French data site, limiting the selection by eliminating any
flares that took place before sunrise or after sunset reduced program run time by almost
two hours. This decreased the data load by approximately half. Folders were created for

the data arranging each monitor specifically by date.
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IV. Analysis and Conclusions

4.1 Hlohovec Analysis

The post processed data contained the original AFRL flare data, with day, month,
year, hour, minute, class and magnitude, combined with the SID monitor data from the
Hlohovec observatory. The new data included a maximum short X-ray flux, time of the
maximum short X-ray flux, maximum long X-ray flux, time of the maximum long X-ray
flux, the maximum value of VLF signal strength, and the time of the maximum VLF

signal strength (see Table 4-1 below).

Table 4-1. Flare and VLF Signal Data

Day | Month | Year | Hour | Min | Class | Mag | MaxShort | TimeShort | MaxLong | TimeLong | MaxVLF | TimeVLF | VLF-Short
9 8 2011 | 8 5 X 6.9 0.00035 8.074722 | 0.00074 8.0825 -33.444 8.08083 0.006111
12 7 2012 | 16 49 X 14 3.8E-05 16.79583 | 0.00014 16.88 -41.998 16.8375 0.041703
25 10 2013 | 8 1 X 17 7.5E-05 8.017222 | 0.00018 8.030278 | -38.429 8.07426 0.057036
25 10 2013 | 15 3 X 2.1 7.7E-05 15.05639 | 0.00021 15.05639 | -42.144 15.0998 0.043414
19 11 2013 | 10 26 X 1 3.5E-05 10.41556 | 0.0001 10.435 -39.267 10.4991 0.083539
10 6 2014 | 12 52 X 15 0 0 0 0 0 0 0

15 6 2014 | 11 39 M 1.1 1.2E-06 11.62917 1.1E-05 11.66278 | -43.648 11.6541 0.024944
11 6 2014 | 21 3 M 3.9 1.1E-05 21.04472 | 3.9E-05 21.055 -31.661 21.7945 0.74975

The first step in analyzing the data was to eliminate the zeroes on the spreadsheet
that occurred for days the observatory was not able to provide data. The next step was to
eliminate any solar flares that occurred at night. This was done using NOAA'’s Solar
Calculator [NOAA 2014]. The calculator provides the time of sunrise and sunset for a
given latitude, longitude, and date. This process left 92 solar flares of the 278 flares that
occurred on days for which Hlohovec provided data. Additional filtering eliminated flares
occurring just after sunrise or just before sunset that were lost in the signal fluctuations

along these boundaries. Additionally, SIDs that occurred during times when the DHO
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transmitter was not broadcasting or other data loss occurred were considered anomalous
and disregarded. To aid the elimination process, a plot was created comparing the time of
maximum X-ray flux to maximum VLF signal strength (see Figure 4-1a below). This plot
allowed visualization of anomalous data points, making it easy to pinpoint the raw data
and the 24 hour plot associated with that data in order to isolate and eliminate the
problem data from the analysis. Once the zeros, pre-sunrise and post-sunset, and dropout

data were eliminated, 63 flares remained (see figure 4-1b below).

a. Time Comparison

Time of Maximum VLF Signal Strength {(Hours)
v

10 15 0
Time of Maximum X-ray Flux (Hours)
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Figure 4-1. a. Unfiltered data from Hlohovec Observatory
b. Data from Hlohovec Observatory with zeros, pre-sunrise, post-sunset,
and anomalous data removed
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The remaining 63 flares were then analyzed by plotting maximum VLF signal
strength as a function of flare magnitude (see Figure 4-2 below). The flare magnitude was
modified to fit the logarithmic classification. M1.0 through M9.9 flares were designated 1
through 9.9 along the x-axis, and each X-class magnitude was multiplied by 10, making
X1.0 equivalent to 10 along the x-axis. A second filtration was made after realizing that
the first 13 flares recorded by the monitor, colored in orange in Figure 4-2, appeared
anomalous when compared to the rest of the data. The signal responses from these flares
were an average of 9.993 decibels stronger than other flares of similar magnitudes. These
13 flares occurred in February and March of 2011, followed by a five month period
where no data was available. It is likely that maintenance or recalibration occurred during
that time period. The Hlohovec data was then separated and each set plotted individually

and a linear regression analysis completed (see Figure 4-3 below).

VLF Signal Strength vs Solar Flare Magnitude
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Figure 4-2. VLF signal strength as a function of solar flare magnitude
as recorded by Hlohovec Observatory
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Figure 4-3. VLF signal strength as a function of solar flare magnitude, as recorded by
Hlohovec Observatory a. August 2011 — June 2014 b. February 2011 — March 2011

44



4.2 Southern France Analysis

The data from Southern France was processed in a similar manner. The
“SunTimes” program was used to filter out flares occurring before sunrise and after
sunset rather than the hands on method used in analyzing the Hlohovec data. It proved
necessary to analyze each transmitter separately as each transmitter displayed different
outages and days without available data. Unlike the Hlohovec data which did not provide
data on days the monitor or transmitter were down and those files were recorded as zeros,
the Southern France site had data for every day whether the transmitter was running or
not. This, and the addition of 8 transmitters to the data set, greatly increased the time
required for analysis of these files.

After filtering the data by eliminating pre-sunrise, post-sunset and data dropouts
for each transmitter, plots were made to compare the maximum VLF signal response to
the flare magnitude, as was done with the data from the Hlohovec Observatory. The
French data, however, showed surprising results, in that there was no correlation between
the strength of the flare and signal response recorded by the SID monitor (see Figure 4-4
below). The DHO transmitter was chosen to show a direct comparison between the
Hlohovec Observatory data and the Southern France data, however, the other 8
transmitters displayed a similar lack of correlation. Further analysis of the DHO signal
plots created in MATLAB verified this lack of correlation between maximum VLF signal
strength and solar flare magnitude (see Figure 4-5 below). In Figure 4-5 a side-by-side
comparison of the Hlohovec plot and the Southern France plot for the same transmitter

can be made. The figure shows plots for an M3.0 flare and an X1.0 flare which occurred
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57 minutes apart. In the Hlohovec plot, a clear difference in signal responses can be seen,

while in the Southern France plot the strength of the responses are nearly identical.

DHO Maximum VLF Signal Strength vs Flare Magnitude
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Figure 4-4. DHO signal strength as a function of solar flare magnitude as recorded by
Lionel Loudet October 2010 — June 2014
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X-Ray Flux and SID signal strength for 11062014 X-Ray Flux and DHO Signal Strength for 11062014

Figure 4-5. Comparison of DHO VLF signal response between Hlohovec Observatroy
and Southern France.

With this surprising discovery, a second theory was postulated considering the
possibility of diurnal or seasonal variations. The French data proved ideal for this
hypothesis, showing clear seasonal variation (see Figure 4-6 below). Data was divided by
season defining the winter months as January, February, and March, the spring months as
April, May, and June, the summer months as July, August, and September, and the
autumn months as October, November, and December. Days along the x-axis were
determine by what day of the year, out of 365 days, a flare occurred. No consideration
was given in this analysis as to which year the flare occurred in. The trend lines in this
plot were completed using a 5" order polynomial expansion. Additionally, in this plot
there is a clear difference in signal response with respect to the frequency. GBZ, 19.6
kHz, had the lowest frequency and the highest signal response through all four seasons,
while DCF, 77.5 kHz, showed the lowest response. The NAA, 24.4 kHz, and NRK, 37.5

kHz, trend lines consecutively decrease between the GBZ and DCF trend lines showing a
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pattern that higher frequency waves show decreased influence by corresponding SID

gvents.

Signal Strength by Season

VLF Signal Strength

0 50 100 150 200 250 300 350
Days

Figure 4-6. Variation of signal strength by season. Seasons delineated by the color of the
background; Winter (blue) Spring (green) Summer (yellow) and Fall (red)

4.3 Conclusions

Research objectives for this project included the creation of a database for LF and
VLF SID events corresponding to solar flare occurrence and X-ray flux, the measurement
of ionospheric incubation time between peak X-ray flux and peak SID response, the
analysis of how different radio frequencies respond to the same SID event, the analysis of
how maximum X-ray flux correlates to LF and VLF signals in the atmosphere, the search

for seasonal or diurnal variation in SID response, and the relation of SID rise time,

4-8

www.manaraa.com



duration and decay time compared to X-ray flux measurements. The creation of a
database began with looking at Stanford’s Solar Center’s SID Monitor program, and
while this did not prove a useful source of data, many lessons were learned about SID
dynamics and observation. The most important of these lessons was that both monitor
and transmitter must be in daylight to successfully observe a SID as the discontinuity at
the day-night terminator disrupts the signal propagation. With this knowledge in mind,
two new SID monitoring sites were chosen: Hlohovec Observatory in Hlohovec Slovakia,
and a privately run monitor in Southern France. The DHO transmitter observed by both
sites provided quality control and a direct comparison between the operations of the
different monitors. Between the two sites and the nine transmission frequencies, data was
collected for over 4500 observed solar flare events. This data was processed into a series
of 24-hour and 1-hour plots directly comparing the LF or VLF signal strength with the X-
ray flux values recorded by the GOES-15 satellite.

The ionospheric incubation times were calculated using the analysis done to find
times for peak values of both X-ray flux and modified LF or VLF signal strength. The
time of the maximum recorded signal strength for each transmitter was subtracted from
the time for the peak X-ray flux. It was found, across all the transmitters, the ionospheric
incubation time averaged 2.7 minutes. The largest average incubation time was observed
by the DCF transmitter at 3.4 minutes with the shortest observed by GBZ at 2.1 minutes.
Further analysis needs to be done to determine if there is a correlation between solar flare
magnitude and ionospheric incubation times.

The Southern France SID monitoring site allowed for a comparison of how

different frequencies respond to the same SID events. The general trend between October
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2011 and June 2014 showed that lower frequencies show the greatest enhancement of
signal during SID events. There is a crossover of signal strength seen in Figure 4-6 during
the later portion of the winter months which could be an error introduced by the
polynomial best fit function or a consequence of all the signals being at a minimum
making them nearly indistinguishable on the scale provided. Overall, the difference in
signal response is logical as the D-region is the reflector of VLF frequencies. The higher
frequencies in the LF range, penetrate further into the D-region and will experience
greater attenuation over the extended path length.

When starting this research it was hypothesized that the SID modified VLF signal
strength would directly relate to the increase of X-ray flux. The amount of X-ray
radiation received at Earth should directly correlate to the amount of photoionization in
the ionosphere creating higher electron densities in the D-region. The enhanced TEC in
the D-region increases its conductivity and the reflection of the radio waves occurs at
lower altitudes without experiencing as much atmospheric attenuation. This phenomenon
was clearly expressed by the data acquired from the Hlohovec Observatory showing a
linear correlation between received signal strength and flare magnitude.

It is well known that the ionosphere varies with diurnally and seasonally
depending on the amount of direct sunlight received at the top of the atmosphere. The
height of the ionosphere is lower in summer and during the day and electron densities are
higher. With this, it was expected that SID strength might also vary by season. This was
clearly seen in the Southern France data where the enhancement of LF and VLF signal

strength in the summer was approximately double that seen in the winter months.
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While time constraints did not allow for a quantitative analysis of SID rise,
duration, and decay times, a qualitative analysis was accomplished using the plots created
in MATLAB. Visualization of LF and VLF signal enhancement displayed alongside X-
ray flux enhancements displayed a coincident pattern in the rise and duration times of the
two events. Decay times of signal enhancement however, were much greater than that of
the X-ray flux. This is due to the recombination rate of ions in the D-region being slower
than the photoionization rate which created the SID event.

4.4 Future Work

While the research objectives for this project were met, there is still extensive
work which could be done to further the understanding and usefulness of the data. In
expanding the research objectives, the most obvious desire would be for additional data
and expansion of the database created during this project. There are many AAVSO sites
that were not used in this research that could be exploited for further comparison and a
deeper understanding into the drastically different results between the Hlohovec
Observatory and Southern France monitoring stations. The ionospheric incubation times
were calculated at face value, and could be further analyzed to determine if there is a
correlation with flare magnitude or seasonal variation. While seasonal variations were
approached in this research, diurnal variations were not taken into account, as there was
not enough flares of comparable magnitude spaced close in time. When this project was
proposed, a quantitative analysis was desired looking for precise rise, duration and decay
times. This could be accomplished by using a baseline integration comparing signal

enhancement on a day with SID events to a day with no SID events.
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Beyond the initial research objectives, additional work could include expanding
the research to analyze different types of SID events other than the SES analyzed here.
This could be accomplished by using data from the Atmospheric Weather
Electromagnetic System for Observation, Modeling, and Education (AWESOME)
monitors developed by Stanford which analyze signal phase and amplitude side-by-side.
Additionally, higher frequency waves could be analyzed and the responses of the E and F
regions to X-ray and EUV enhancements. Additionally, the creation of a computational
model to investigate propagation paths by altering characteristics of the Earth-ionosphere

waveguide could be useful in predicting more precise effects on radio transmissions.
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location
0033 20 Firat University Arts & Science, Elazig, Turkey
004 3 S. Webster, OH, USA
00455 6 USA

005 8 Sula, Montana, USA
009 7 Wheelersburg, OH, USA
0108 7 Mexico

0110 6

0132 5 USA

0139 3

0144 6

0145 6 Antarctica

015 6

0153 6

016 15 Vienna, Austria
0162 8

0170 3

0177 7 USA

0181 3

0183 6 Malaysia

0195 5 USA

0201 1 Slovenia

0207 6 USA

0213 7

0215 6

0220 6 Sweden

0230 6 USA
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location
0232 6

0237 3

23 5 Baku, Azerbaijan
025 6 Lagos, Nigeria
0253 6 Canada

0254 6 Canada

0261 3 Italy

0267 6 USA

0268 1

0274 2 USA

0283 1

0289 7 Brazil

029 2 McDonough School, Reisterstown, Maryland, USA
0290 5 USA

0297 6

0299 P Crotia

0304 5 Greece

0305 6 UK

0309 7

0322 6 Tunisia

0325 7 Vietham

0332 6

0333 6

035 6 USA

0355 5

0357 6 Canada
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Appendix A: Stanford Solar Center Online Database

Station ID

Monitors at Station

Station Location

0358

036

Canada

0360

0368

USA

0377

USA

0383

0390

0395

0409

0412

0414

0415

USA

0420

0421

0424

USA

0429

0431

Brazil

0436

044

College of Staten Island, Staten Island, NY, USA

0441

USA

045

India

0451

0468

0496

Brazil

0499

051

N|Ojwlou|YN(O|N | O|N|Rr|IRRIO(O|O | |IN|/OODOODOOD|(OOD OO |N|O

India
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location

052 6 Dordogne-Perigord, France
056 6 Nigeria

062 6 Colegio Santa Maria De Santiago, Santiago, Chile
063 8 Konstanz, Germany

072 5 USA

083 1 McMath-Hulbert Solar Observatory, Lake Angelus, Michigan, USA
085 6

094 6 Grants Pass, Oregon, USA
1 2

107 6 USA

112 4 Uruguay

114 7

1234 6

162 8

168 8 Australia

16988 3 USA

179 6 USA

205 6 USA

2125 6 Venezuela

2126 1 Venezuela

220 6 Sweden

263 6 Canada

271 10 Tunisia

400 5

78 2 France

901 6 USA
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location

960 11

9901 5 USA

9902 6

9905 4 USA

9906 2

9941 1

999 11 UK

9999999 4

AAVSO-1 1 Cambridge, Mass, USA

AAVSO-2 1 USA

Astronomy 4 Eagan, MN

DAROO1 6

ERACO001 8

JASPER 5

N2YO 6 Chantilly, VA, USA

New-SuperSID 0828 | 21 China

New-SuperSID--085 | 6 Petroleum Middle School, Daging, China

NONE 4

P0O03 7 USA

Ref 1 Wilcox Solar Observatory, Stanford, California, USA
S-0000-FB-0000 1

S-0000-FB-0039 1 India

S-0009 1 Chabot Space & Science Center, Oakland, California, USA
S-0012 1 Wilcox Solar Observatory, Stanford, California, USA
S-0013 1 USA

S0018-FB-0018 1 USA
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Appendix A: Stanford Solar Center Online Database

Station ID

Monitors at Station

Station Location

S-0021-FB0021

South Side HS, Commack HS, Manhattan, NY, USA

S-0022-FB-0022

USA

S-0023-FB-0023

Utah State University, Logan, Utah, USA

S-0025-FB-0025

West Valley High School, Fairbanks, Alaska, USA

S-0026 USA
S-0026-FB-0000 George Observatory, Richmond, TX, USA
S-0028 Jakowski @DLR, Neustrelitz, Germany

S-0029-FB-0029

Southwestern University, Gerogetown, TX, USA

S-0031-FB-0031

Amsterdam, Netherlands

S-0036

Brazil

S-0036-FB-0036

Ponta Grossa State University, Parana, Brazil

S-0039 Maharashtra, India
S-0039-FB-0039
S-0040 Alabama A&M, Normal, Alabama, USA

S-0042-FB-0042

Harvard-Smithsonian, Cambridge, Maryland, USA

S-0045-FB-0045

Rice University, Houston, TX, USA

s-0048-FB-0048

Hopkinsville Community College, Hopkinsville, KY, USA

S-0049-FB-0049

USA

S-0052 Anderson High School, Cincinnati, OH, USA
S-0054-FB-0054 Suffolk County Community College, Selden, NY, USA
S-0057 Dublin, Ireland

S-0059 University of Porto, Porto, Portugal

S-0067 Herfordshire, GB

S-0068 North Carolina A&T State University, N. Carolina, USA

S-0070-FB-0070

German Aerospace Center, Neustrelitz, Germany

S-0075

RlRr|lRr|lRPR|IR|R|IP|(P|RIR[R|[R|RPR|R|R|RPR|lO|RPR|[PR|[R[RPR[R|[R|R|R|R

CIRES/EVE, Boulder, Colorado, USA
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location

S-0077-FB-0077 USA

S-0082 Gymnasium Walsrode, Walsrode, Germany
S-0085 Felix Klein Gymnasium, Goettingen, Germany

S-0087-FB-0087

Ernst Moritz Arndt Gymnasium, Bergen, Germany

S-0088-FB-0088

Johannesburg, South Africa

S-0090-FB-0090

Hamilton Amateur Astronomers, Ancaster, Ontario, Canada

S-0091

Instituto Geofisico Universidad Javeriana, Bogota, Columbia

S-0096-FB-0096

University of Tunis El Manar I, Tunis, Tunisia

S-0099-FB-0099

Texas Lutheran University, Sequin, TX, USA

S-0200

Inter-University Centre for Astronomy & Astrophysics, Pune, India

S-0207-FB-0207 Uruguay
S-0210 Auckland University of Technology, New Zealand
S-0214 Iganmode Grammar School, Ota, Nigeria

S-0220-FB-0220

Universidad Nacional Autonoma de Mexico, Monterrey, Mexico

S-0224-FB-0224

Blue Ridge Learning Center, Todd, N. Carolina, USA

S-0232-FB-0000

USA

S-0232-FB-0232

Karns HS, Karns, TN, USA

S-0239-FB-0239 Tunisia
S-0240-FB-0240 Mexico
S-0249-FB-0000 Nigeria

S-0256-FB-0256

Center for Radio Astronomy, Belgrade, Serbia

S-0258

Puebelo, Colorado, USA

S-0258-FB-0001

USA

S-0258-FB-0000

USA

S-0261-FB-0261

Osservatorio Astronomico di Torino, Torino, Italy

S-0263-FB-0263

RlRr|lRr|lR|IRPR|R|RPR|RPR|RIRPR[R[IRPR|IR|[R|R|RPR|RPR|R[P[R[RPR[R|[R|R|R|R

Archenhold Sternwarte, Berlin, Germany
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Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location

S-0272-FB-0272 Nigeria

S-0273 University of Congo, Kinshasa, Congo
S-0275 Sebha University, Sebha, Libya

S-0293-FB-0293

Nigeria

S-0405-FB-0405

Liceo Classico C. Alberto, Novara, Italy

S-0408-FB-0408

Liceo Valdese, Torre Pellice, Italy

S-0412

Nigeria

S-0420-FB-0420

Italy Schools, Rome, Italy

S-0423-FB-0423

Italy Schools, Rome, Italy

S-0426-FB-0426

Italy Schools, Rome, Italy

S-0811-FB-1027 Austria
S-0813 Denmark
S-0816-FB-0816 USA
S-0817 Brazil
S-0819 Ankorage, AK, USA
S-0821-FB-0000 Korea
S-0823-FB-0823 China
S-0825 China
S-08280FB-0828 China
S-0832 Germany
S-0847-FB-0000 Canada
S-0849-FB-0000 USA
S-0850-FB-0850 USA
S-1003-FB-1003 Uganda

S-1013-FB-0000

Asociatia Astroclubul Bucresti, Bucharest, Romania

S-1019

RlRr|lRr|R|R|RPR|RPR|RPR|R[R[R|lO|IN|R|R|RPR|RPR|RPR[P[R[R[R[R|[R|R|R

Astronomical Observatory, Astronomical Association of Zagreb, Zagreb, Croatia

www.manaraa.com




Appendix A: Stanford Solar Center Online Database

Station ID Monitors at Station | Station Location

S-1026 1 Foods Technology College, Ulaanbaatar, Mongolia
S-1032-FB-0000 1 Clarence Jones Observatory, University of Tennessee at Chattanooga, Hixson, TN, USA
S-1035-FB-1035 1 St Johnsbury Academy, St Jonhsbury, Vermont, USA
S-1042 1 Nomuun School, Ulaanbaatar, Mongolia
S-1056-FB-1056 1 Korea Science Academy, Busan, Republic of Korea
S-233 1 USA

SARA-SS 4 USA

SJF001-0001 1

SuperSID_0001 6

SuperSID-001 4 USA

SUPERSID-041 1 India

SuperSID-0828 8 China

SuperSID-101 6 Floral Park, NY, USA

SuperSID-BCHS 21 China

TinySID-0001 1 Netherlands

UKM_SID37 6 Malaysia

WSO-SS 6 USA

Listed in Online Database

Listed on Map as SuperSID

Listed on Map as having data available in Online Database

Listed on Map as not having data available in Online Database
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

S-0027 Leeds Amateur Radio Astronomy Observatory Leeds, Maine NML
S-0252 The Harbor School Harbor, Massachusetts FB-0252
S-1031 Center for Integrated Space Weather Modeling Boston, Massachusetts NAA
S-0037 Concord-Carlisle Regional HS Concord, Massachusetts NAA
S-1002 Lake Grove at Maple Valley Wendell, Massachusetts NAA
S-0079 Siena College & Greewich High School Loudonville, NY NAA
S-0044 CIRES EPO Rochester, NY NML
S-1022 Custer Institute and Observatory, Inc Southold, NY NAA
S-0083 Manhasset HS Manhasset, NY NAA
S-0035 Medgar Evers C. Brooklyn, NY NAA

15 Manhasset, NY

S-0242 East Bronx Academy for the Future Bronx, NY FB-0242
S-1001 Red Hook HS Red Hook, NY NAA
S-0215 Parkway Center City, HS Parkway Center City, PA FB-0215
96 Mahwah, NJ

S-0211 PA FB-0211
S-0217 WA3UER Radio Astronomy Group Tarentm, PA NAA, NML
S-0255 WAS3UER Radio Astronomy Group Tarentm, PA FB-0255
34 Woodstock, Maryland

S-0006(5) | Goddard Space Flight Center Greenbelt, Maryland NLK

67 Springfield, VA

S-0228 Loudoun County Public Schools-Academy of Science Loudoun County, VA FB-0228
80 Elk Creek, VA

26 Atlanta, GA

92 Knoxville, TN

90 Blythewood HS Blythewwod, S. Carolina

S-0226 Gulf HS, Coast Guard Aux Gulf HS, FL FB-0226
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

60 Chiefland, FL

S-0030 Florida Inst. Of Tech Melbourne, FL

38 Brandon, MS

S$-0205 Amite HS Amite, Louisiana FB-0205

S-0097 Hixson, TN NAA

97 Hixson, TN

85 Tamke-Allen Observatory Knoxville, TN

36 Murfreesboro, TN

S-0080 Hopkinsville Community College Hopkinsville, KY NAA

3 Bowling Green, KY

S-0034 Mortfield Thornhill, Ontario, CA NAA

S-0062 Okemos High School Okemos, Ml NAA

S-0208 Chippewa Hills HS Chippewa Hills, Ml FB-0208

S-0229 Streamwood HS Eglin, IL FB-0229

S-0024 4H Sauk County, WI Baraboo, WI NML

S-0084 The Prairie High School Racine, WI NAA

S-0078 Fond du lac Gidaa youth camp Cloquet, MN NML

46 Sioux Falls, SD

S-0011 Holton High School Holton, KS NLK

69 Bethany, OK

S-0066 Commerce High School Commerce, TX NAA

98 Haltom City, TX

S-0249 Riverside Park Academy San Antonio, TX FB-0249

22 Boerne, TX

S-0073 Rebel Ridge Observatory Sugar Land, TX NLK
Montana State University Bozeman, MT

S-0072 S-Meter Salt Lake City, UT NLK

S-0225 MESA & Earthorks Denver, CO FB-0225
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location
S-0203 MESA & Earthorks Denver, CO FB-0203
S-0201 MESA & Earthorks Denver, CO FB-0201
S-0219 MESA & Earthorks Denver, CO FB-0219
10 Arvada, CO
73 Arvada High School Arvada, CO
S-0014 UCAR/NCRAR Boulder, CO NLK
S-0071 CIRES/EVE Boulder, CO NLK
S-0046 Chaco Culture National Historical Park Chaco Canyon, NM NML
64 VLA, NM
95 Sonoita, AZ
S-0281 St Marys Central High School Phoenix, AZ
S-0004 Deer Valley High School Antioch, AZ NLK, NML
84 Embry Riddle Areo University Prescott, AZ
31 Sedona, AZ
39 Seattle, WA
71 Portland, OR
S-0250 Armadillo Technical Institute Pheonix, OR NLK
California State University East Bay Hayward, CA
S-0002 Castro Valley High School Castro Valley, CA NLK
S-0010 Chabot Community College Hayward, CA NLK
S-0001 San Leandro High School San Leandro, CA NLK
S-0003 Palomares 4H Castro Valley, CA NLK
21 Castro Valley, CA NLK
88 Hayward, CA
91 Fremont, CA
89 Monroe Middle School San Jose, CA
University of California Irvine Sunnyvale, CA NLK
S_REF Wilcox Soalr Observatroy Stanford, CA
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

m Hobnob Inc North Fork, CA
S-0016 Culver City Unified SD Culver City, CA NLK
S-0015 Downey HS Lakewood, CA NLK
47 Hinton, AB, CA
65 Wasilla, Alaska
S-0093 Kipnuk School Kipnuk, Alaska NAA
S-0041 Car Sagan Observatory Hermosillo Sonora, Mexico NML
S-0216 Instituto Politecnico Nacional Ciudad de Mexico, Mexico FB-0216
S-0038 University of Puerto Rico San Juan, Puerto Rico NAA
S-0064 Alfonzo Cata Martinez High School Gurabo, Puerto Rico NAA
S-0264 St Thomas, US Virgin Islands | FB-0264
S-1023 St George's Secondary School St George, US Virgin Islands | NAA
S-0254 St Croix, US Virgin Islands FB-0254
74 University of Guyana Turkeyen, Guyana
53 Bogota, Columbia
68 San Paulo, Brazil




Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

54 Rio de Janerio, Brazil

S-0270 Program of Englih as a Second Language Montevideo, Uruguay NAA
Midway Atoll

S-0004 Kamahemeha High School Pukalani, HI NLK

S-0074 University of Hawaii/Institute for Astronomy Honolulu, HI NLK
Ascension Island
Dublin Ireland

S-0051 U College Dublin Dublin Ireland

S-0058 Dublin Ireland

S-0056 Dublin Ireland

S-0246 Speyside HS Scotland FB-0246

S-0033 Mullard Space Science Lab Dorking, Surrey, UK NAA

S-1006 Chatham House Grammar School Kent, UK DHO

78 Antony, France

S-0086 Heinrich Herz Schule Hamburg, Germany NAA
Germany

S-0081 U Goettingen Goettingen, Germany NAA

S-0268 Goettingen, Germany DHO
Goettingen, Germany DHO

S-0089 U Goettingen Goettingen, Germany NAA

S-0065 U Goettingen Goettingen, Germany NAA

S-0206 Widukind-Gymnasium Enger Germany NAA

S-1017 Maerkische Schule Bochum Bochum, Germany DHO

66 Ruhr University Bochum, Germany

S-0248 European Radio Astronomy Club/ University of Applied Science, Heidelberg | Mannheim, Germany FB-0248

S-1007 Stephen-Hawking School Neckargemund, Germany DHO

S-1020 Christoph-Probst-Gymnasium Gilching Gilching, Germany DHO

S-0212 Lycee Louis Armand Mulhouse Cedex, France FB-0212
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

79 Lycee Louis Armand Mulhouse, France

S-0265 Kantonsschule Wattwil Switzerland NAA
S-0403 Liceo Classico e Scientifico Santa Maria Verbania Pallanza, Italy DHO
S-0414 1.S.S. di Cairo Montenotte Cairo Montenotte, Italy DHO
S-0409 Liceo Ginnasio G. B. Bodoni Saluzzo, Italy DHO
S-0415 ISS G. Vallauri-sez Liceo Scient Tecnolog. Fossano, Italy DHO
S-0410 ITCG G.Ruffini Imperia, Italy DHO
S-0411 Liceo Scientifico Statale A. Issel Finale Ligure, Italy DHO
S-0416 Istituto I. Calvino Genova, ltaly DHO
S-0417 Istituto Nautico San Giorgio C. Colombo Camogli, Italy DHO
75 Assisi, Italy

S-1011 Italy Schools Italy DHO
S-0427 Italy Schools Italy DHO
S-0418 Italy Schools Italy DHO
S-0429 Italy Schools Italy DHO
S-0419 Italy Schools Italy DHO
S-0430 Italy Schools Italy DHO
S-0431 Italy Schools Italy DHO
S-0421 Italy Schools Italy DHO
S-0432 Italy Schools Italy DHO
S-0422 Italy Schools Italy DHO
S-0433 Italy Schools Italy DHO
S-0434 Italy Schools Italy DHO
S-0424 Italy Schools Italy DHO
S-0435 Italy Schools Italy DHO
S-0425 Italy Schools Italy DHO
S-1010 Italy Schools Italy DHO

Swider, Poland
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location
76 Grammar School of Alois Jirasek Litomysl, Czech Republic
S-0060 Colegiul Banatean, Timisoara Timisoara, Romania NAA
Bulgaria
S-0235 Yuri Gagarin Public Astronomical Observatory & Planetarium Stara Zagora, Bulgaria NAA
42 BU Kandilli Observatory & Earthquake Research Unst. Istanbul, Turkey
43 Athens, Greece
Elazig, Turkey
S-0218 Lebanon Schools Lebanon NAA
S-0231 Lebanon Schools Lebanon NAA
S-0267 Lebanon Schools Lebanon NAA
S-0277 Lebanon Schools Lebanon NAA
S-0241 Lebanon Schools Lebanon NAA
S-0043 SCiLeb/Lebanon Lebanon NML
Tel Aviy, Israel
S-0284 Cairo University Cairo, Egypt NAA
S-0271 Helwan University Helwan, Egypt
Tripoli, Libya
Algiers, Algeria
Rabat, Morocco
S-0285 I'Universite Cheikh Anta Dakar, Senegal NAA
S-0276 Ecole Normale Superieure Universite de Koudougou Koudougou, Burkina Faso
S-0222 Pius Okeke Nigeria NAA
S-0204 Pius Okeke Nigeria NAA
S-0213 Pius Okeke Nigeria NAA
Nigerian Meteorological Agency Abuga, Nigeria
S-0095 SpaceSouth International Osun, Nigeria NAA
S-0286 Ladoke Akintola University of Technology Oyo, Nigeria
S-0290 Moremi High School and OAU International School lle-Ife, Nigeria
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

Akure, Nigeria
S-0280 Oroke High School/Adekunle Ajasin University Akungba-Akoko, Nigeria
S-0292 University of llorin Secondary School llorin, Nigeria
S-0287 Tai Solarin University of Education ljiebu-Ode, Nigeria
S-0247 Lagos State Junior Model College Lagos, Nigeria NAA
S-0274 Univesity of Lagos International High School Lagos, Nigeria NAA
S-0402 University of Nigeria Nsukka Nsukka, Nigeria NAA
50 Cener for Basic Space Science, University of Nigeria Nsukka, Enugu State, Nigeria
S-0413 University of Gondar Gondar, Ethiopia NAA
S-0283 Lazarist Catholic School Addis Ababa, Ethiopia
S$-0296 Ethiopia NAA
S$-1012 Jimma University Jima, Ethiopia DHO
27 Ethiopia
S-1016 Jomo Kenyatta University Juja, Kenya DHO
S-1014 University of Nairobi Nairobi, Kenya DHO
S-1015 University of Nairobi Nairobi, Kenya DHO
S-0288 Makerere University Kampala, Uganda NAA
S-0291 University of Kinshasa Kinshasa, Congo
S-0407 University of Zambia Lusaka, Zambia NAA
S-0279 University of Namibia Windhoek, Namibia NAA
S-1008 Universidade Eduardo Mondlane Maputo, Mozambique DHO
S-0223 University of Kwazulu-Natal, Durban Durban, South Africa NAA
S-0257 Delft SDC South Africa FB-0257
14 Cape Town, South Africa
S-0238 University of Cape Town Cape Town, South Africa NAA
S-0277 Hermanus Magnetic Observatory Hermanus, South Africa
18 Tashkent, Uzbekistan

Allahabad, India
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization Monitor Location

Varanasi, India
20 Gurdev Observatory Vadodara, Gujarat, India
82 India
S-0063 Sky Watchers' Association, Kolkata Biswajit Bose Kolkata, India NAA
40 SN Bose National Centre of Basic Sciences Kolkata, India
77 Guangdong HS Guangzhou, China
S-0092 NARIT/Majidol Wittanusorn School Chiang Mai, Thailand NAA
S-0094 Mabhidol University, Bangkok Bangkok, Thailand NAA
S-0262 Mahidol University Mahidol University, Thailand | NAA
S-1040 National Institute of Aeronautics and Space Jakarta, Indonesia NwWC

Perth, Australia

Adelaide, Australia

Hobart, Australia

Suva, Fiji

NIWA Tangaroa
S-0299 Skydome Observatory-Dargaville HS Dargaville, New Zealand NAA
S-0298 Huirangi Observatory Huirangi, New Zealand NAA
S-1025 Orkhon Tsogtsolbor High School, Erdebet City Ulaanbaatar, Mongolia NwWC
S-1024 Orchlon School Ulaanbaatar, Mongolia NWC
S-1041 32-r School Of Ulaanbaatar Ulaanbaatar, Mongolia NWC
S-1029 86-r School of Ulaanbaatar Ulaanbaatar, Mongolia NWC
S-1038 National University Mongolia, School of Physics & Electronics Ulaanbaatar, Mongolia NwWC
S-1009 National University Mongolia, Geophysics Department Ulaanbaatar, Mongolia 3SA
S$-1028 National University Mongolia, School of Physics & Electronics Ulaanbaatar, Mongolia JI
S-1030 National University Mongolia, School of Physics & Electronics Ulaanbaatar, Mongolia NwWC
S-1005 Huangsongyu High School Huangsongyu, China 3SA
S-1055 School of Mathematical Science, Peking University Peking, China JI
S-1027 School of Mathematical Science, Peking University Peking, China NwWC
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Appendix B: Stanford SID Monitor locations according to Map

Monitor # | Operating Organization

Monitor Location

S-1037 Middle School and High School 101

China

Datonge

S-0230 Middle School and High School 101

China

NAA

SID monitor sites listed on Map

Listed on Map as having data in Online Database, but no matching site found in Database

Listed on Map as SuperSID
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Appendix C: VLF Transmitter List

Station Frequency kHz Location

JXN 16.4 | Novik, Norway

SAQ 17.2 | Grimeton, Sweden

VTX3 18.2 | South Vijayanarayanam, India
VTX4 19.2 | South Vijayanarayanam, India
GBzZ 19.58 | Anthorn, UK

NWC 19.8 | Harold E holt, North West Cape, Exmouth, Australia
ICV 20.27 | Isola di Tavolara, Italy

NPM 21.4 | Peral Harbour, Lualuahei, Hawaii, USA
GQD 22.1 | Skelton, UK

NDT 22.2 | Ebino, Japan

DHO38 23.4 | Rhauderfehn, Germany

NAA 24.4 | Cutler, Maine, USA

NLK 24.8 | Oso Wash, Jim Creek, Washington, USA
NML 25.2 | La Moure, North Dakota, USA
TBB 26.7 | Bafa, Turkey

NRK 37.5 | Grindavik, Iceland

JJY-40 40 | Mount Ootakadoya, Fukushima prefecture, Japan
NAU 40.8 | Aguada, Puerto Rico

NSY 45.9 | Niscemi, Italy

HWU 15.1/18.3/21.75/22.6 | Rosnay, France

FTA 16.8/20.9 | Sainte-Assise, France
26.600kHz

3SA

3SB

db1l

dB2

DHO

DHO30

GYA

HHY-40

HWU1

HWU2

HWU3

HWV

JI

JY

LIS

LIS2

multiple

NLF
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Appendix C: VLF Transmitter List

NLM
NM
NOV
NSC
NSP
NTS
RA1
RA2
RA3
RBU
RJH63
RIH64
RJH99
TEST
TFK
TVI
UFQE
UGE
UGKZ
UIK
UVA
VLF
VTX
VTX3india
VTX4india

| Transmitters with known frequency and GPS coordinates
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